These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 15901404)
1. Theory of the snowflake plot and its relations to higher-order analysis methods. Czanner G; Grün S; Iyengar S Neural Comput; 2005 Jul; 17(7):1456-79. PubMed ID: 15901404 [TBL] [Abstract][Full Text] [Related]
2. Nerve-impulse patterns: a quantitative display technique for three neurons. Perkel DH; Gerstein GL; Smith MS; Tatton WG Brain Res; 1975 Dec; 100(2):271-96. PubMed ID: 1192179 [TBL] [Abstract][Full Text] [Related]
3. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation. Torikai H; Nishigami T Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567 [TBL] [Abstract][Full Text] [Related]
4. Display technique using time-dependent scatter diagrams for the study of changing relative timings of three spike trains: evaluation of functional connectivity in a local area of the nervous system. Hamada Y; Tamai Y Brain Res Brain Res Protoc; 1997 Aug; 1(3):227-31. PubMed ID: 9385058 [TBL] [Abstract][Full Text] [Related]
10. An improved method for the estimation of firing rate dynamics using an optimal digital filter. Cherif S; Cullen KE; Galiana HL J Neurosci Methods; 2008 Aug; 173(1):165-81. PubMed ID: 18577401 [TBL] [Abstract][Full Text] [Related]
11. What can a neuron learn with spike-timing-dependent plasticity? Legenstein R; Naeger C; Maass W Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932 [TBL] [Abstract][Full Text] [Related]
12. On the maximization of information flow between spiking neurons. Parra LC; Beck JM; Bell AJ Neural Comput; 2009 Nov; 21(11):2991-3009. PubMed ID: 19635018 [TBL] [Abstract][Full Text] [Related]
13. Estimating receptive fields in the presence of spike-time jitter. Gollisch T Network; 2006 Jun; 17(2):103-29. PubMed ID: 16818393 [TBL] [Abstract][Full Text] [Related]
14. Local shuffling of spike trains boosts the accuracy of spike train spectral analysis. Rivlin-Etzion M; Ritov Y; Heimer G; Bergman H; Bar-Gad I J Neurophysiol; 2006 May; 95(5):3245-56. PubMed ID: 16407432 [TBL] [Abstract][Full Text] [Related]
15. A simple indicator of nonstationarity of firing rate in spike trains. Gourévitch B; Eggermont JJ J Neurosci Methods; 2007 Jun; 163(1):181-7. PubMed ID: 17418899 [TBL] [Abstract][Full Text] [Related]
16. Simulation of the neuronal interactions and connection of neuronal activity with changes of heart rhythm and myocardial electrophysiological properties. Prudnikau HA Ann N Y Acad Sci; 2005 Jun; 1048():418-21. PubMed ID: 16154965 [TBL] [Abstract][Full Text] [Related]
17. Tight data-robust bounds to mutual information combining shuffling and model selection techniques. Montemurro MA; Senatore R; Panzeri S Neural Comput; 2007 Nov; 19(11):2913-57. PubMed ID: 17883346 [TBL] [Abstract][Full Text] [Related]
18. Optimal neuronal tuning for finite stimulus spaces. Brown WM; Bäcker A Neural Comput; 2006 Jul; 18(7):1511-26. PubMed ID: 16764512 [TBL] [Abstract][Full Text] [Related]
19. Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants. D'Haene M; Schrauwen B; Van Campenhout J; Stroobandt D Neural Comput; 2009 Apr; 21(4):1068-99. PubMed ID: 18928367 [TBL] [Abstract][Full Text] [Related]
20. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study. Kim KH; Kim SS; Kim SJ J Neurosci Methods; 2006 Jan; 150(2):202-11. PubMed ID: 16099513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]