These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15901549)

  • 1. Novel, benign, solid catalysts for the oxidation of hydrocarbons.
    Ratnasamy P; Raja R; Srinivas D
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):1001-12. PubMed ID: 15901549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn-ZSM-5, characterization, and catalytic oxidation of hydrocarbons.
    Meng Y; Genuino HC; Kuo CH; Huang H; Chen SY; Zhang L; Rossi A; Suib SL
    J Am Chem Soc; 2013 Jun; 135(23):8594-605. PubMed ID: 23679582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and biomimetic study of a hydroxo-bridged dinuclear phenanthroline cupric complex encapsulated in mesoporous silica: models for catechol oxidase.
    Lee CH; Wong ST; Lin TS; Mou CY
    J Phys Chem B; 2005 Jan; 109(2):775-84. PubMed ID: 16866441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monomeric, trimeric, and tetrameric transition metal complexes (Mn, Fe, Co) containing N,N-bis(2-pyridylmethyl)-2-aminoethanol/-ate: preparation, crystal structure, molecular magnetism and oxidation catalysis.
    Shin JW; Rowthu SR; Hyun MY; Song YJ; Kim C; Kim BG; Min KS
    Dalton Trans; 2011 Jun; 40(21):5762-73. PubMed ID: 21523305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorous biphasic catalysis: synthesis and characterization of copper(I) and copper(II) fluoroponytailed 1,4,7-Rf-TACN and 2,2'-Rf-bipyridine complexes--their catalytic activity in the oxidation of hydrocarbons, olefins, and alcohols, including mechanistic implications.
    Contel M; Izuel C; Laguna M; Villuendas PR; Alonso PJ; Fish RH
    Chemistry; 2003 Sep; 9(17):4168-78. PubMed ID: 12953202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds.
    Tanev PT; Chibwe M; Pinnavaia TJ
    Nature; 1994 Mar; 368(6469):321-3. PubMed ID: 8127366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium(IV) in the organic-structure-directing-agent-free synthesis of hydrophobic and large-pore molecular sieves as redox catalysts.
    Wang J; Yokoi T; Kondo JN; Tatsumi T; Zhao Y
    ChemSusChem; 2015 Aug; 8(15):2476-80. PubMed ID: 26073555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing.
    Peng WP; Johnson GE; Fortmeyer IC; Wang P; Hadjar O; Cooks RG; Laskin J
    Phys Chem Chem Phys; 2011 Jan; 13(1):267-75. PubMed ID: 21076748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-synthesis, characterization and catalytic properties of fluorine-planted MWW-type titanosilicate.
    Fang X; Wang Q; Zheng A; Liu Y; Lin L; Wu H; Deng F; He M; Wu P
    Phys Chem Chem Phys; 2013 Apr; 15(14):4930-8. PubMed ID: 23440001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntheses and electronic structures of one-electron-oxidized group 10 metal(II)-(disalicylidene)diamine complexes (metal = Ni, Pd, Pt).
    Shimazaki Y; Yajima T; Tani F; Karasawa S; Fukui K; Naruta Y; Yamauchi O
    J Am Chem Soc; 2007 Mar; 129(9):2559-68. PubMed ID: 17290991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3.
    Bourikas K; Fountzoula C; Kordulis C
    Langmuir; 2004 Nov; 20(24):10663-9. PubMed ID: 15544399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeolite framework stabilized copper complex inspired by the 2-His-1-carboxylate facial triad motif yielding oxidation catalysts.
    Kervinen K; Bruijnincx PC; Beale AM; Mesu JG; van Koten G; Klein Gebbink RJ; Weckhuysen BM
    J Am Chem Soc; 2006 Mar; 128(10):3208-17. PubMed ID: 16522101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled oxidation of hydrocarbons by the membrane-bound methane monooxygenase: the case for a tricopper cluster.
    Chan SI; Yu SS
    Acc Chem Res; 2008 Aug; 41(8):969-79. PubMed ID: 18605740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel heterogeneous catalysts in the wet peroxide oxidation of phenol.
    Ovejero G; Sotelo JL; Martinez F; Gordo L
    Water Sci Technol; 2001; 44(5):153-60. PubMed ID: 11695454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast catalytic hydroxylation of hydrocarbons with ruthenium porphyrins.
    Wang C; Shalyaev KV; Bonchio M; Carofiglio T; Groves JT
    Inorg Chem; 2006 Jun; 45(12):4769-82. PubMed ID: 16749842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of late transition metal complexes with molecular oxygen.
    Boisvert L; Goldberg KI
    Acc Chem Res; 2012 Jun; 45(6):899-910. PubMed ID: 22578038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoselective and biomimetic hydroxylation of hydrocarbons by non-heme micro-oxo-bridged diiron(III) catalysts using m-CPBA as oxidant.
    Mayilmurugan R; Stoeckli-Evans H; Suresh E; Palaniandavar M
    Dalton Trans; 2009 Jul; (26):5101-14. PubMed ID: 19562169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulation of Fe(III) and Cu(II) complexes in NaY zeolite.
    Drechsel SM; Kaminski RC; Nakagaki S; Wypych F
    J Colloid Interface Sci; 2004 Sep; 277(1):138-45. PubMed ID: 15276050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow release of NO by microporous titanosilicate ETS-4.
    Pinto ML; Rocha J; Gomes JR; Pires J
    J Am Chem Soc; 2011 Apr; 133(16):6396-402. PubMed ID: 21449590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.