These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15901921)

  • 21. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.
    Lopachin RM; Gavin T; Decaprio A; Barber DS
    Chem Res Toxicol; 2012 Feb; 25(2):239-51. PubMed ID: 22053936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of LC-MS/MS analyses to identify site-specific chemical protein adducts in vitro.
    Fisher AA; Labenski MT; Monks TJ; Lau SS
    Methods Mol Biol; 2011; 691():317-26. PubMed ID: 20972762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-toxicity analysis of type-2 alkenes: in vitro neurotoxicity.
    Lopachin RM; Barber DS; Geohagen BC; Gavin T; He D; Das S
    Toxicol Sci; 2007 Jan; 95(1):136-46. PubMed ID: 17023561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein targets of acrylamide adduct formation in cultured rat dopaminergic cells.
    Martyniuk CJ; Feswick A; Fang B; Koomen JM; Barber DS; Gavin T; Lopachin RM
    Toxicol Lett; 2013 Jun; 219(3):279-87. PubMed ID: 23566896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. gamma-Diketone neuropathy: axon atrophy and the role of cytoskeletal protein adduction.
    LoPachin RM; DeCaprio AP
    Toxicol Appl Pharmacol; 2004 Aug; 199(1):20-34. PubMed ID: 15289087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental neurotoxicants and the vulnerable male brain: a systematic review of suspected neurotoxicants that disproportionally affect males.
    Kern JK; Geier DA; Homme KG; King PG; Bjørklund G; Chirumbolo S; Geier MR
    Acta Neurobiol Exp (Wars); 2017; 77(4):269-296. PubMed ID: 29369294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systems analysis of protein modification and cellular responses induced by electrophile stress.
    Jacobs AT; Marnett LJ
    Acc Chem Res; 2010 May; 43(5):673-83. PubMed ID: 20218676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Symposium overview: the role of glutathione in neuroprotection and neurotoxicity.
    Monks TJ; Ghersi-Egea JF; Philbert M; Cooper AJ; Lock EA
    Toxicol Sci; 1999 Oct; 51(2):161-77. PubMed ID: 10543018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2,5-Hexanedione-induced changes in the monomeric neurofilament protein content of rat spinal cord fractions.
    LoPachin RM; He D; Reid ML; Opanashuk LA
    Toxicol Appl Pharmacol; 2004 Jul; 198(1):61-73. PubMed ID: 15207649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and quantification of in vitro adduct formation between protein reactive xenobiotics and a lysine-containing model peptide.
    Reichardt P; Schreiber A; Wichmann G; Metzner G; Efer J; Raabe F
    Environ Toxicol; 2003 Feb; 18(1):29-36. PubMed ID: 12539141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA adduct formation from acrylamide via conversion to glycidamide in adult and neonatal mice.
    Gamboa da Costa G; Churchwell MI; Hamilton LP; Von Tungeln LS; Beland FA; Marques MM; Doerge DR
    Chem Res Toxicol; 2003 Oct; 16(10):1328-37. PubMed ID: 14565774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neurofilaments are non-essential elements of toxicant-induced reductions in fast axonal transport: pulse labeling in CNS neurons.
    Stone JD; Peterson AP; Eyer J; Sickles DW
    Neurotoxicology; 2000 Aug; 21(4):447-57. PubMed ID: 11022855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in the neutral proteinase activities of central and peripheral nervous systems of acrylamide-, carbon disulfide-, or 2,5-hexanedione-treated rats.
    Gupta RP; Abou-Donia MB
    Mol Chem Neuropathol; 1996 Sep; 29(1):53-66. PubMed ID: 8887940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nerve terminals as the primary site of acrylamide action: a hypothesis.
    LoPachin RM; Ross JF; Lehning EJ
    Neurotoxicology; 2002 May; 23(1):43-59. PubMed ID: 12164547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peaceful use of disastrous neurotoxicants.
    Finkelstein Y; Milatovic D; Lazarovici P; Ophir A; Richter ED; Aschner M; Lecht S; Marcinkiewicz C; Lelkes PI; Zaja-Milatovic S; Gupta RC; Brodsky B; Rosengarten A; Proscura E; Shapira E; Wormser U
    Neurotoxicology; 2010 Sep; 31(5):608-20. PubMed ID: 20620165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein damage by reactive electrophiles: targets and consequences.
    Liebler DC
    Chem Res Toxicol; 2008 Jan; 21(1):117-28. PubMed ID: 18052106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axonal neurofilaments are nonessential elements of toxicant-induced reductions in fast axonal transport: video-enhanced differential interference microscopy in peripheral nervous system axons.
    Stone JD; Peterson AP; Eyer J; Oblak TG; Sickles DW
    Toxicol Appl Pharmacol; 1999 Nov; 161(1):50-8. PubMed ID: 10558923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of beta-N-methylamino-L-alanine induced neurotoxicity.
    Lobner D
    Amyotroph Lateral Scler; 2009; 10 Suppl 2():56-60. PubMed ID: 19929733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways.
    Zhao M; Lewis Wang FS; Hu X; Chen F; Chan HM
    Food Chem Toxicol; 2017 Aug; 106(Pt A):25-35. PubMed ID: 28526328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling acrylamide acute neurotoxicity in zebrafish larvae.
    Prats E; Gómez-Canela C; Ben-Lulu S; Ziv T; Padrós F; Tornero D; Garcia-Reyero N; Tauler R; Admon A; Raldúa D
    Sci Rep; 2017 Oct; 7(1):13952. PubMed ID: 29066856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.