These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 15903412)

  • 21. Shear-induced self-diffusion of inertial particles in a viscous fluid.
    Abbas M; Climent E; Simonin O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036313. PubMed ID: 19392055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport coefficients and orientational distributions of spheroidal particles with magnetic moment normal to the particle axis (Analysis for an applied magnetic field normal to the shear plane).
    Satoh A; Ozaki M
    J Colloid Interface Sci; 2006 Jun; 298(2):957-66. PubMed ID: 16430913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of velocities and acceleration for a particle in Brownian correlated disorder: inertial case.
    Le Doussal P; Petković A; Wiese KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061116. PubMed ID: 23005060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concentration fluctuations of large Stokes number particles in a one-dimensional random velocity field.
    Olla P; Vuolo RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066315. PubMed ID: 18233925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analytical investigation of the combined effect of fluid inertia and unsteadiness on low-Re particle centrifugation.
    Candelier F; Angilella JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047301. PubMed ID: 16711958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized Fokker-Planck equation, Brownian motion, and ergodicity.
    Plyukhin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061136. PubMed ID: 18643246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subdiffusive behavior of a dilute non-Brownian suspension under shear.
    Guzmán-Lastra F; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042311. PubMed ID: 23679418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous investigation of sedimentation and diffusion of a single colloidal particle near an interface.
    Oetama RJ; Walz JY
    J Chem Phys; 2006 Apr; 124(16):164713. PubMed ID: 16674163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport coefficients and orientational distributions of rodlike particles with magnetic moment normal to the particle axis under circumstances of a simple shear flow.
    Satoh A; Ozaki M; Ishikawa T; Majima T
    J Colloid Interface Sci; 2005 Dec; 292(2):581-90. PubMed ID: 16081082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Entropic particle transport: higher-order corrections to the Fick-Jacobs diffusion equation.
    Martens S; Schmid G; Schimansky-Geier L; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051135. PubMed ID: 21728518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow.
    Rosén T; Do-Quang M; Aidun CK; Lundell F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053017. PubMed ID: 26066258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of a self-diffusiophoretic particle in shear flow.
    Frankel AE; Khair AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013030. PubMed ID: 25122392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion of a sphere in a dilute solution of polymer coils.
    Krüger M; Rauscher M
    J Chem Phys; 2009 Sep; 131(9):094902. PubMed ID: 19739868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.
    Ahuja VR; van der Gucht J; Briels WJ
    J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring shear-induced self-diffusion in a counterrotating geometry.
    Breedveld V; van den Ende D; Bosscher M; Jongschaap RJ; Mellema J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021403. PubMed ID: 11308488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium.
    Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    J Heat Transfer; 2013 Jan; 135(1):0110111-9. PubMed ID: 23814315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.