These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 15903526)

  • 1. Markov chain-based numerical method for degree distributions of growing networks.
    Shi D; Chen Q; Liu L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036140. PubMed ID: 15903526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Markovian iterative method for degree distributions of growing networks.
    Shi D; Zhou H; Liu L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031105. PubMed ID: 21230023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Link-space formalism for network analysis.
    Smith DM; Lee CF; Onnela JP; Johnson NF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036112. PubMed ID: 18517466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of shells in complex networks.
    Shao J; Buldyrev SV; Braunstein LA; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036105. PubMed ID: 19905178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supremacy distribution in evolving networks.
    Hołyst JA; Fronczak A; Fronczak P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046119. PubMed ID: 15600472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-size effects in Barabási-Albert growing networks.
    Waclaw B; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056114. PubMed ID: 17677140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring structures and mean first passage time in networks.
    Baronchelli A; Loreto V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026103. PubMed ID: 16605394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean field analysis of algorithms for scale-free networks in molecular biology.
    Konini S; Janse van Rensburg EJ
    PLoS One; 2017; 12(12):e0189866. PubMed ID: 29272285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture.
    Sen P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046107. PubMed ID: 15169069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying network heterogeneity.
    Estrada E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066102. PubMed ID: 21230700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal dimensionality reduction of Markov chains using graph transformation.
    Kannan D; Sharpe DJ; Swinburne TD; Wales DJ
    J Chem Phys; 2020 Dec; 153(24):244108. PubMed ID: 33380101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear relation on the correlation in complex networks.
    Ma CW; Szeto KY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047101. PubMed ID: 16711951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological network comparison using graphlet degree distribution.
    Przulj N
    Bioinformatics; 2007 Jan; 23(2):e177-83. PubMed ID: 17237089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks.
    Ching WK; Zhang S; Ng MK; Akutsu T
    Bioinformatics; 2007 Jun; 23(12):1511-8. PubMed ID: 17463027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors.
    Duardo-Sánchez A; Munteanu CR; Riera-Fernández P; López-Díaz A; Pazos A; González-Díaz H
    J Chem Inf Model; 2014 Jan; 54(1):16-29. PubMed ID: 24320872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of the percolation threshold for the network model of Barabási and Albert.
    Pietsch W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066112. PubMed ID: 16906919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local versus global knowledge in the Barabási-Albert scale-free network model.
    Gómez-Gardeñes J; Moreno Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):037103. PubMed ID: 15089443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean-field theory for clustering coefficients in Barabási-Albert networks.
    Fronczak A; Fronczak P; Hołyst JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046126. PubMed ID: 14683021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The algebra of the general Markov model on phylogenetic trees and networks.
    Sumner JG; Holland BR; Jarvis PD
    Bull Math Biol; 2012 Apr; 74(4):858-80. PubMed ID: 21975643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.