These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 15903581)
1. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
2. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem. Ramaprabhu P; Dimonte G; Young YN; Calder AC; Fryxell B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066308. PubMed ID: 17280149 [TBL] [Abstract][Full Text] [Related]
3. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations. Zhou ZR; Zhang YS; Tian BL Phys Rev E; 2018 Mar; 97(3-1):033108. PubMed ID: 29776047 [TBL] [Abstract][Full Text] [Related]
4. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
5. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452 [TBL] [Abstract][Full Text] [Related]
6. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
7. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438 [TBL] [Abstract][Full Text] [Related]
8. Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability. Abarzhi SI; Nishihara K; Rosner R Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036310. PubMed ID: 16605654 [TBL] [Abstract][Full Text] [Related]
9. Pure single-mode Rayleigh-Taylor instability for arbitrary Atwood numbers. Liu W; Wang X; Liu X; Yu C; Fang M; Ye W Sci Rep; 2020 Mar; 10(1):4201. PubMed ID: 32144289 [TBL] [Abstract][Full Text] [Related]
10. Asymptotic behavior of the Rayleigh-Taylor instability. Duchemin L; Josserand C; Clavin P Phys Rev Lett; 2005 Jun; 94(22):224501. PubMed ID: 16090402 [TBL] [Abstract][Full Text] [Related]
11. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
12. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability. Liang H; Li QX; Shi BC; Chai ZH Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453 [TBL] [Abstract][Full Text] [Related]
13. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Goncharov VN Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101 [TBL] [Abstract][Full Text] [Related]
14. Bubble interaction model for hydrodynamic unstable mixing. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear theory of the ablative Rayleigh-Taylor instability. Sanz J; RamÃrez J; Ramis R; Betti R; Town RP Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120 [TBL] [Abstract][Full Text] [Related]
16. Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability. Goncharov VN; Li D Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046306. PubMed ID: 15903785 [TBL] [Abstract][Full Text] [Related]
17. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability. Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208 [TBL] [Abstract][Full Text] [Related]
18. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
19. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794 [TBL] [Abstract][Full Text] [Related]
20. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]