These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 15903607)

  • 41. All-angle negative refraction and active flat lensing of ultraviolet light.
    Xu T; Agrawal A; Abashin M; Chau KJ; Lezec HJ
    Nature; 2013 May; 497(7450):470-4. PubMed ID: 23698446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.
    Iwaszczuk K; Strikwerda AC; Fan K; Zhang X; Averitt RD; Jepsen PU
    Opt Express; 2012 Jan; 20(1):635-43. PubMed ID: 22274387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Propagation in and scattering from a matched metamaterial having a zero index of refraction.
    Ziolkowski RW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046608. PubMed ID: 15600548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coherently controlling metamaterials.
    Chakrabarti S; Ramakrishna SA; Wanare H
    Opt Express; 2008 Nov; 16(24):19504-11. PubMed ID: 19030036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of swelling of a photoresist on electromagnetic resonance of terahertz metamaterials.
    Chiang WF; Hsieh YT; Wang SH; Miao HY; Liu JH; Huang CY
    Opt Lett; 2016 Jun; 41(12):2879-82. PubMed ID: 27304312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach.
    Rockstuhl C; Zentgraf T; Pshenay-Severin E; Petschulat J; Chipouline A; Kuhl J; Pertsch T; Giessen H; Lederer F
    Opt Express; 2007 Jul; 15(14):8871-83. PubMed ID: 19547225
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laminated metamaterial flat lens at millimeter-wave frequencies.
    Kitayama D; Yaita M; Song HJ
    Opt Express; 2015 Sep; 23(18):23348-56. PubMed ID: 26368436
    [TBL] [Abstract][Full Text] [Related]  

  • 48. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range.
    Ma T; Huang Q; He H; Zhao Y; Lin X; Lu Y
    Opt Express; 2019 Jun; 27(12):16624-16634. PubMed ID: 31252886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controlling electromagnetic scattering with wire metamaterial resonators.
    Filonov DS; Shalin AS; Iorsh I; Belov PA; Ginzburg P
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):1910-1916. PubMed ID: 27828093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tuning Metamaterials by using Amorphous Magnetic Microwires.
    Lopez-Dominguez V; Garcia MA; Marin P; Hernando A
    Sci Rep; 2017 Aug; 7(1):9394. PubMed ID: 28839260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A close-ring pair terahertz metamaterial resonating at normal incidence.
    Gu J; Han J; Lu X; Singh R; Tian Z; Xing Q; Zhang W
    Opt Express; 2009 Oct; 17(22):20307-12. PubMed ID: 19997257
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D Bulk Metamaterials with Engineered Optical Dispersion at Terahertz Frequencies Utilizing Amorphous Multilayered Split-Ring Resonators.
    Huang Y; Kida T; Wakiuchi S; Okatani T; Inomata N; Kanamori Y
    Adv Sci (Weinh); 2024 Jul; ():e2405378. PubMed ID: 38976553
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hyperbolic metamaterial based on anisotropic Mie-type resonance.
    Lan C; Bi K; Li B; Cui X; Zhou J; Zhao Q
    Opt Express; 2013 Dec; 21(24):29592-600. PubMed ID: 24514510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conductive coupling of split ring resonators: a path to THz metamaterials with ultrasharp resonances.
    Al-Naib I; Hebestreit E; Rockstuhl C; Lederer F; Christodoulides D; Ozaki T; Morandotti R
    Phys Rev Lett; 2014 May; 112(18):183903. PubMed ID: 24856698
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials.
    Koschny T; Markos P; Smith DR; Soukoulis CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):065602. PubMed ID: 14754259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flexible frequency selective metamaterials for microwave applications.
    Gao B; Yuen MM; Ye TT
    Sci Rep; 2017 Mar; 7():45108. PubMed ID: 28322338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconfigurable terahertz metamaterials.
    Tao H; Strikwerda AC; Fan K; Padilla WJ; Zhang X; Averitt RD
    Phys Rev Lett; 2009 Oct; 103(14):147401. PubMed ID: 19905602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays.
    Sersic I; Frimmer M; Verhagen E; Koenderink AF
    Phys Rev Lett; 2009 Nov; 103(21):213902. PubMed ID: 20366039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Configurable metamaterial absorber with pseudo wideband spectrum.
    Zhu W; Huang Y; Rukhlenko ID; Wen G; Premaratne M
    Opt Express; 2012 Mar; 20(6):6616-21. PubMed ID: 22418545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching.
    Zografopoulos DC; Beccherelli R
    Sci Rep; 2015 Aug; 5():13137. PubMed ID: 26272652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.