These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 15903630)
1. Mirror fluid method for numerical simulation of sedimentation of a solid particle in a Newtonian fluid. Yang C; Mao ZS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036704. PubMed ID: 15903630 [TBL] [Abstract][Full Text] [Related]
2. Direct numerical simulation of particulate flows with heat transfer in a rotating cylindrical cavity. Schmidt R; Nikrityuk PA Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2574-83. PubMed ID: 21576173 [TBL] [Abstract][Full Text] [Related]
3. Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers. Shotorban B; Balachandar S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056703. PubMed ID: 19518589 [TBL] [Abstract][Full Text] [Related]
4. Computational simulation of a non-newtonian model of the blood separation process. De Gruttola S; Boomsma K; Poulikakos D Artif Organs; 2005 Dec; 29(12):949-59. PubMed ID: 16305650 [TBL] [Abstract][Full Text] [Related]
5. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods. Bhattacharya A; Kesarkar T Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548 [TBL] [Abstract][Full Text] [Related]
6. Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian-Eulerian method. Al Quddus N; Moussa WA; Bhattacharjee S J Colloid Interface Sci; 2008 Jan; 317(2):620-30. PubMed ID: 17949729 [TBL] [Abstract][Full Text] [Related]
7. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
8. A finite difference method for a coupled model of wave propagation in poroelastic materials. Zhang Y; Song L; Deffenbaugh M; Toksöz MN J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735 [TBL] [Abstract][Full Text] [Related]
9. Simulation on gasification of forestry residues in fluidized beds by Eulerian-Lagrangian approach. Xie J; Zhong W; Jin B; Shao Y; Liu H Bioresour Technol; 2012 Oct; 121():36-46. PubMed ID: 22858466 [TBL] [Abstract][Full Text] [Related]
10. Full-scale solutions to particle-laden flows: Multidirect forcing and immersed boundary method. Luo K; Wang Z; Fan J; Cen K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066709. PubMed ID: 18233945 [TBL] [Abstract][Full Text] [Related]
11. Direct numerical simulation of the motion of circular pollutant particles in Newtonian fluid. Shao XM; Lin JZ; Yu ZS J Environ Sci (China); 2003 Sep; 15(5):685-90. PubMed ID: 14562932 [TBL] [Abstract][Full Text] [Related]
12. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909 [TBL] [Abstract][Full Text] [Related]
13. Modified momentum exchange method for fluid-particle interactions in the lattice Boltzmann method. Hu Y; Li D; Shu S; Niu X Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033301. PubMed ID: 25871240 [TBL] [Abstract][Full Text] [Related]
14. Numerical study of laminar-turbulent transition in particle-laden channel flow. Klinkenberg J; Sardina G; de Lange HC; Brandt L Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043011. PubMed ID: 23679517 [TBL] [Abstract][Full Text] [Related]
15. Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries. Hofer M; Perktold K Biorheology; 1997; 34(4-5):261-79. PubMed ID: 9578803 [TBL] [Abstract][Full Text] [Related]
16. Investigation of sedimentation process of soluble spherical particles in a non-Newtonian medium. Dogonchi AS; Seyyedi SM; Hashemi-Tilehnoee M; Ganji DD J Colloid Interface Sci; 2018 Nov; 530():532-537. PubMed ID: 29990789 [TBL] [Abstract][Full Text] [Related]
17. On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories. Reynolds AM J Colloid Interface Sci; 2000 Dec; 232(2):260-268. PubMed ID: 11097759 [TBL] [Abstract][Full Text] [Related]
18. Fluid-structure interaction problems in bio-fluid mechanics: a numerical study of the motion of an isolated particle freely suspended in channel flow. Dubini G; Pietrabissa R; Montevecchi FM Med Eng Phys; 1995 Dec; 17(8):609-17. PubMed ID: 8564156 [TBL] [Abstract][Full Text] [Related]
19. Simulation of liquid flow with a combination artificial intelligence flow field and Adams-Bashforth method. Babanezhad M; Behroyan I; Nakhjiri AT; Marjani A; Shirazian S Sci Rep; 2020 Oct; 10(1):16719. PubMed ID: 33028861 [TBL] [Abstract][Full Text] [Related]
20. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. Vahidi B; Fatouraee N; Imanparast A; Moghadam AN J Biomech Eng; 2011 Mar; 133(3):031004. PubMed ID: 21303180 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]