These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 15903630)
21. Computational simulation of the blood separation process. De Gruttola S; Boomsma K; Poulikakos D; Ventikos Y Artif Organs; 2005 Aug; 29(8):665-74. PubMed ID: 16048484 [TBL] [Abstract][Full Text] [Related]
22. An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids. Kijanski N; Krach D; Steeb H Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438580 [TBL] [Abstract][Full Text] [Related]
23. Identification of DVT diseases using numerical simulations. Simão M; Ferreira JM; Mora-Rodriguez J; Ramos HM Med Biol Eng Comput; 2016 Oct; 54(10):1591-609. PubMed ID: 26780462 [TBL] [Abstract][Full Text] [Related]
24. Short-time motion of Brownian particles in a shear flow. Iwashita T; Yamamoto R Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031401. PubMed ID: 19391938 [TBL] [Abstract][Full Text] [Related]
25. Electrophoresis in a Carreau fluid at arbitrary zeta potentials. Lee E; Tai CS; Hsu JP; Chen CJ Langmuir; 2004 Sep; 20(19):7952-9. PubMed ID: 15350058 [TBL] [Abstract][Full Text] [Related]
26. Mathematical and Numerical Modeling of Turbulent Flows. Vedovoto JM; Serfaty R; Da Silveira Neto A An Acad Bras Cienc; 2015; 87(2):1195-232. PubMed ID: 26131642 [TBL] [Abstract][Full Text] [Related]
27. Film flow of a suspension down an inclined plane. Li X; Pozrikidis C Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):847-69. PubMed ID: 12804218 [TBL] [Abstract][Full Text] [Related]
28. A hybrid approach for the simulation of a nearly neutrally buoyant nanoparticle thermal motion in an incompressible Newtonian fluid medium. Uma B; Radhakrishnan R; Eckmann DM; Ayyaswamy PS J Heat Transfer; 2013 Jan; 135(1):0110111-9. PubMed ID: 23814315 [TBL] [Abstract][Full Text] [Related]
33. Flow and particle deposition in the Turbuhaler: a CFD simulation. Milenkovic J; Alexopoulos AH; Kiparissides C Int J Pharm; 2013 May; 448(1):205-13. PubMed ID: 23528279 [TBL] [Abstract][Full Text] [Related]
34. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems. Kumar M; Natarajan G Phys Rev E; 2019 May; 99(5-1):053304. PubMed ID: 31212515 [TBL] [Abstract][Full Text] [Related]
35. A novel periodic boundary condition for computational hemodynamics studies. Bahramian F; Mohammadi H Proc Inst Mech Eng H; 2014 Jul; 228(7):643-51. PubMed ID: 25015666 [TBL] [Abstract][Full Text] [Related]
36. Motion of a Rigid Cylinder Between Parallel Plates in Stokes Flow: Part 1: Motion in A Quiescent Fluid and Sedimentation. Dvinsky AS; Popel AS Comput Fluids; 1987; 15(4):391-404. PubMed ID: 28943671 [TBL] [Abstract][Full Text] [Related]
37. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid. Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764 [TBL] [Abstract][Full Text] [Related]
38. Numerical simulation of the sedimentation of cylindrical pollutant particles in fluid. Lin JZ; Wang YL; Wang WX; Yu ZS J Environ Sci (China); 2002 Oct; 14(4):433-8. PubMed ID: 12491714 [TBL] [Abstract][Full Text] [Related]
39. A penalty method to model particle interactions in DNA-laden flows. Trebotich D; Miller GH; Bybee MD J Nanosci Nanotechnol; 2008 Jul; 8(7):3749-56. PubMed ID: 19051932 [TBL] [Abstract][Full Text] [Related]
40. Modeling of Interior Ballistic Gas-Solid Flow Using a Coupled Computational Fluid Dynamics-Discrete Element Method. Cheng C; Zhang X J Appl Mech; 2013 May; 80(3):0314031-314036. PubMed ID: 24891728 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]