These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15903633)

  • 1. Simulation method to resolve hydrodynamic interactions in colloidal dispersions.
    Nakayama Y; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036707. PubMed ID: 15903633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method.
    Nakayama Y; Kim K; Yamamoto R
    Eur Phys J E Soft Matter; 2008 Aug; 26(4):361-8. PubMed ID: 19230114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A penalty method to model particle interactions in DNA-laden flows.
    Trebotich D; Miller GH; Bybee MD
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3749-56. PubMed ID: 19051932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation model of concentrated colloidal nanoparticulate flows.
    Fujita M; Yamaguchi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026706. PubMed ID: 18352147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method.
    Mino Y; Shinto H; Sakai S; Matsuyama H
    Phys Rev E; 2017 Apr; 95(4-1):043309. PubMed ID: 28505823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation method of colloidal suspensions with hydrodynamic interactions: fluid particle dynamics.
    Tanaka H; Araki T
    Phys Rev Lett; 2000 Aug; 85(6):1338-41. PubMed ID: 10991546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical foundation of the fluid particle dynamics method for colloid dynamics simulation.
    Furukawa A; Tateno M; Tanaka H
    Soft Matter; 2018 May; 14(19):3738-3747. PubMed ID: 29700543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of particle interactions in DNA-laden flows at the microscale.
    Trebotichy D; Millerz GH; Bybee MD
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6670-3. PubMed ID: 17959482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids.
    Yang X; Liu M; Peng S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063011. PubMed ID: 25615191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of Lees-Edwards periodic boundary conditions for direct numerical simulations of particle dispersions under shear flow.
    Kobayashi H; Yamamoto R
    J Chem Phys; 2011 Feb; 134(6):064110. PubMed ID: 21322664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Close-Packed Vesicular Dispersions to Stabilize Colloidal Particle Dispersions against Sedimentation.
    Yang YJ; Corti DS; Franses EI
    Langmuir; 2015 Aug; 31(32):8802-8. PubMed ID: 26203879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions.
    Jafari S; Yamamoto R; Rahnama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026702. PubMed ID: 21405925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.
    Amiri Delouei A; Nazari M; Kayhani MH; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053312. PubMed ID: 25353919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-scale solutions to particle-laden flows: Multidirect forcing and immersed boundary method.
    Luo K; Wang Z; Fan J; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066709. PubMed ID: 18233945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of the hydrodynamic drag force in atomic force microscopy measurements undertaken in fluids.
    Méndez-Méndez JV; Alonso-Rasgado MT; Faria EC; Flores-Johnson EA; Snook RD
    Micron; 2014 Nov; 66():37-46. PubMed ID: 25080275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydrodynamic interactions on rapid Brownian coagulation of colloidal dispersions.
    Matsuoka Y; Fukasawa T; Higashitani K; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051403. PubMed ID: 23214780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic wetting of non-newtonian fluids: multicomponent molecular-kinetic approach.
    Liang ZP; Wang XD; Duan YY; Min Q; Wang C; Lee DJ
    Langmuir; 2010 Sep; 26(18):14594-9. PubMed ID: 20795633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic coupling of spherical particles to a planar fluid-fluid interface: theoretical analysis.
    Bławzdziewicz J; Ekiel-Jezewska ML; Wajnryb E
    J Chem Phys; 2010 Sep; 133(11):114703. PubMed ID: 20866150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.