These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1590364)

  • 41. Red blood cell sodium transport in patients with cirrhosis.
    Henriksen UL; Kiszka-Kanowitz M; Bendtsen F; Henriksen JH
    Clin Physiol Funct Imaging; 2016 Sep; 36(5):359-67. PubMed ID: 26016736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improvement of spectral resolution in shift-reagent-aided 23Na NMR spectroscopy in the isolated perfused rat heart system.
    Miller SK; Chu WJ; Pohost GM; Elgavish GA
    Magn Reson Med; 1991 Aug; 20(2):184-95. PubMed ID: 1775046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isoosmotic shrinkage by self-stimulated outward Na-K-Cl cotransport in quail erythrocytes.
    Lou JM; Garay RP; Gimenez I; Escanero JF; Alda JO
    Pflugers Arch; 2003 Oct; 447(1):64-70. PubMed ID: 12955514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular cation transport studied by 6/7Li and 23Na NMR in a porous Mo132 Keplerate type nano-capsule as model system.
    Rehder D; Haupt ET; Müller A
    Magn Reson Chem; 2008; 46 Suppl 1():S24-9. PubMed ID: 18853473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfhydryl oxidation and activation of red cell K(+)-Cl- cotransport in the transgenic SAD mouse.
    De Franceschi L; Beuzard Y; Brugnara C
    Am J Physiol; 1995 Oct; 269(4 Pt 1):C899-906. PubMed ID: 7485459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 39K, 23Na, and 31P NMR studies of ion transport in Saccharomyces cerevisiae.
    Ogino T; den Hollander JA; Shulman RG
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5185-9. PubMed ID: 6351054
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A selective inversion recovery method for the improvement of 23Na NMR spectral resolution in isolated perfused rat hearts.
    Simor T; Kim SK; Chu WJ; Pohost GM; Elgavish GA
    NMR Biomed; 1993; 6(3):201-8. PubMed ID: 8347454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 31P and 23Na NMR studies of the structure and lability of the sodium shift reagent, bis(tripolyphosphate)dysprosium(III) ([Dy(P3O10)]7-) ion, and its decomposition in the presence of rat muscle.
    Matwiyoff NA; Gasparovic C; Wenk R; Wicks JD; Rath A
    Magn Reson Med; 1986 Feb; 3(1):164-8. PubMed ID: 3959884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rubidium transport in human erythrocyte suspensions monitored by 87Rb NMR with aqueous chemical shift reagents.
    Helpern JA; Welch KM; Halvorson HR
    NMR Biomed; 1989 Jul; 2(2):47-54. PubMed ID: 2518154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sodium influxes in renal epithelial LLC-PK1/Cl4 cells monitored by 23Na NMR.
    Jans AW; Willem R; Kellenbach ER; Kinne RK
    Magn Reson Med; 1988 Jul; 7(3):292-9. PubMed ID: 2462662
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variable NMR visibility of intracellular sodium induced by Na(+)-substrate cotransport in dog cortical tubules.
    Ammann H; Boulanger Y; Vinay P
    Magn Reson Med; 1990 Dec; 16(3):368-79. PubMed ID: 2077328
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of lovastatin treatment on red blood cell and platelet cation transport.
    Weder AB; Serr C; Torretti BA; Bassett DR; Zweifler AJ
    Hypertension; 1991 Feb; 17(2):203-9. PubMed ID: 1991653
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 23Na-nuclear magnetic resonance investigation of gramicidin-induced ion transport through membranes under equilibrium conditions.
    Buster DC; Hinton JF; Millett FS; Shungu DC
    Biophys J; 1988 Feb; 53(2):145-52. PubMed ID: 2449917
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance.
    Castle AM; Macnab RM; Shulman RG
    J Biol Chem; 1986 Mar; 261(7):3288-94. PubMed ID: 3512550
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-resolution NMR studies of transmembrane cation transport: use of an aqueous shift reagent for 23Na.
    Pike MM; Simon SR; Balschi JA; Springer CS
    Proc Natl Acad Sci U S A; 1982 Feb; 79(3):810-4. PubMed ID: 6174981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. NMR studies of intracellular sodium ions in amphibian oocytes, ovulated eggs, and early embryos.
    Gupta RK; Kostellow AB; Morrill GA
    J Biol Chem; 1985 Aug; 260(16):9203-8. PubMed ID: 3874869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Response of the 23Na-NMR double-quantum filtered signal to changes in Na+ ion concentration in model biological solutions and human erythrocytes.
    Tauskela JS; Shoubridge EA
    Biochim Biophys Acta; 1993 Oct; 1158(2):155-65. PubMed ID: 8399316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring of the effects of dysprosium shift reagents on cell suspensions.
    Boulanger Y; Fleser A; Amarouche R; Ammann H; Bergeron M; Vinay P
    NMR Biomed; 1992; 5(1):1-10. PubMed ID: 1550704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NMR relaxation studies of intracellular Na+ in red blood cells.
    Shinar H; Navon G
    Biophys Chem; 1984 Nov; 20(4):275-83. PubMed ID: 6509150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.