These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 1590374)
1. ATP depletion stimulates calcium-dependent protein breakdown in chick skeletal muscle. Fagan JM; Wajnberg EF; Culbert L; Waxman L Am J Physiol; 1992 May; 262(5 Pt 1):E637-43. PubMed ID: 1590374 [TBL] [Abstract][Full Text] [Related]
2. Burn injury stimulates multiple proteolytic pathways in skeletal muscle, including the ubiquitin-energy-dependent pathway. Fang CH; Tiao G; James H; Ogle C; Fischer JE; Hasselgren PO J Am Coll Surg; 1995 Feb; 180(2):161-70. PubMed ID: 7850049 [TBL] [Abstract][Full Text] [Related]
3. Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. Tiao G; Fagan JM; Samuels N; James JH; Hudson K; Lieberman M; Fischer JE; Hasselgren PO J Clin Invest; 1994 Dec; 94(6):2255-64. PubMed ID: 7989581 [TBL] [Abstract][Full Text] [Related]
4. Regulation of different proteolytic pathways in skeletal muscle in fasting and diabetes mellitus. Kettelhut IC; Pepato MT; Migliorini RH; Medina R; Goldberg AL Braz J Med Biol Res; 1994 Apr; 27(4):981-93. PubMed ID: 8087098 [TBL] [Abstract][Full Text] [Related]
5. Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle. Tawa NE; Kettelhut IC; Goldberg AL Am J Physiol; 1992 Aug; 263(2 Pt 1):E326-34. PubMed ID: 1514614 [TBL] [Abstract][Full Text] [Related]
6. Effects of exogenous protease effectors on beef tenderness development and myofibrillar degradation and solubility. Uytterhaegen L; Claeys E; Demeyer D J Anim Sci; 1994 May; 72(5):1209-23. PubMed ID: 8056666 [TBL] [Abstract][Full Text] [Related]
7. Control of protein degradation in muscle by prostaglandins, Ca2+, and leukocytic pyrogen (interleukin 1). Goldberg AL; Baracos V; Rodemann P; Waxman L; Dinarello C Fed Proc; 1984 Apr; 43(5):1301-6. PubMed ID: 6323220 [TBL] [Abstract][Full Text] [Related]
8. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Wing SS; Goldberg AL Am J Physiol; 1993 Apr; 264(4 Pt 1):E668-76. PubMed ID: 7682781 [TBL] [Abstract][Full Text] [Related]
9. Differential effects of acute changes in cell Ca2+ concentration on myofibrillar and non-myofibrillar protein breakdown in the rat extensor digitorum longus muscle in vitro. Assessment by production of tyrosine and N tau-methylhistidine. Goodman MN Biochem J; 1987 Jan; 241(1):121-7. PubMed ID: 3566705 [TBL] [Abstract][Full Text] [Related]
10. Pentoxifylline inhibits Ca2+-dependent and ATP proteasome-dependent proteolysis in skeletal muscle from acutely diabetic rats. Baviera AM; Zanon NM; Carvalho Navegantes LC; Migliorini RH; do Carmo Kettelhut I Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E702-8. PubMed ID: 17077345 [TBL] [Abstract][Full Text] [Related]
11. Regulation of myofibrillar accumulation in chick muscle cultures: evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins. Silver G; Etlinger JD J Cell Biol; 1985 Dec; 101(6):2383-91. PubMed ID: 3934180 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Whitehouse AS; Smith HJ; Drake JL; Tisdale MJ Cancer Res; 2001 May; 61(9):3604-9. PubMed ID: 11325828 [TBL] [Abstract][Full Text] [Related]
13. Protective effect of ascorbic acid on the breakdown of proteins exposed to hydrogen peroxide in chicken skeletal muscle. Gecha OM; Fagan JM J Nutr; 1992 Nov; 122(11):2087-93. PubMed ID: 1432249 [TBL] [Abstract][Full Text] [Related]
14. Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy. Medina R; Wing SS; Haas A; Goldberg AL Biomed Biochim Acta; 1991; 50(4-6):347-56. PubMed ID: 1724903 [TBL] [Abstract][Full Text] [Related]
15. Proteasome blockers inhibit protein breakdown in skeletal muscle after burn injury in rats. Fang CH; Wang JJ; Hobler S; Li BG; Fischer JE; Hasselgren PO Clin Sci (Lond); 1998 Aug; 95(2):225-33. PubMed ID: 9680506 [TBL] [Abstract][Full Text] [Related]
16. Maintenance of normal length improves protein balance and energy status in isolated rat skeletal muscles. Baracos VE; Goldberg AL Am J Physiol; 1986 Oct; 251(4 Pt 1):C588-96. PubMed ID: 3464216 [TBL] [Abstract][Full Text] [Related]
17. The activation of protein degradation in muscle by Ca2+ or muscle injury does not involve a lysosomal mechanism. Furuno K; Goldberg AL Biochem J; 1986 Aug; 237(3):859-64. PubMed ID: 3099758 [TBL] [Abstract][Full Text] [Related]
18. Influence of calcium and other divalent cations on protein turnover in rat skeletal muscle. Baracos V; Greenberg RE; Goldberg AL Am J Physiol; 1986 Jun; 250(6 Pt 1):E702-10. PubMed ID: 3521317 [TBL] [Abstract][Full Text] [Related]
19. The ATP-independent pathway in red blood cells that degrades oxidant-damaged hemoglobin. Fagan JM; Waxman L J Biol Chem; 1992 Nov; 267(32):23015-22. PubMed ID: 1429649 [TBL] [Abstract][Full Text] [Related]
20. The rate of protein degradation in isolated skeletal muscle does not correlate with reduction-oxidation status. Fagan JM; Goldberg AL Biochem J; 1985 May; 227(3):689-94. PubMed ID: 3924027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]