These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15903785)

  • 1. Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability.
    Goncharov VN; Li D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046306. PubMed ID: 15903785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers.
    Goncharov VN
    Phys Rev Lett; 2002 Apr; 88(13):134502. PubMed ID: 11955101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Rayleigh-Taylor growth in converging geometry.
    Clark DS; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):055302. PubMed ID: 16089591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016325. PubMed ID: 20365478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio.
    Ramaprabhu P; Dimonte G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces.
    Clark DS; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions.
    Zhang H; Betti R; Yan R; Zhao D; Shvarts D; Aluie H
    Phys Rev Lett; 2018 Nov; 121(18):185002. PubMed ID: 30444419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble acceleration in the ablative Rayleigh-Taylor instability.
    Betti R; Sanz J
    Phys Rev Lett; 2006 Nov; 97(20):205002. PubMed ID: 17155687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids.
    Rollin B; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046317. PubMed ID: 21599305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear theory of the ablative Rayleigh-Taylor instability.
    Sanz J; Ramírez J; Ramis R; Betti R; Town RP
    Phys Rev Lett; 2002 Nov; 89(19):195002. PubMed ID: 12443120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.
    Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG
    Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability.
    Liang H; Li QX; Shi BC; Chai ZH
    Phys Rev E; 2016 Mar; 93(3):033113. PubMed ID: 27078453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability.
    Abarzhi SI; Nishihara K; Rosner R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036310. PubMed ID: 16605654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability.
    Sadot O; Smalyuk VA; Delettrez JA; Meyerhofer DD; Sangster TC; Betti R; Goncharov VN; Shvarts D
    Phys Rev Lett; 2005 Dec; 95(26):265001. PubMed ID: 16486364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical approximations for the collapse of an empty spherical bubble.
    Obreschkow D; Bruderer M; Farhat M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066303. PubMed ID: 23005202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive diagnosis of growth rates of the ablative Rayleigh-Taylor instability.
    Azechi H; Sakaiya T; Fujioka S; Tamari Y; Otani K; Shigemori K; Nakai M; Shiraga H; Miyanaga N; Mima K
    Phys Rev Lett; 2007 Jan; 98(4):045002. PubMed ID: 17358782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing.
    Cheng B; Glimm J; Sharp DH
    Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.
    Puente GF; Urteaga R; Bonetto FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046305. PubMed ID: 16383531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.