These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15903949)

  • 1. Phonon-induced optical superlattice.
    de Lima MM; Hey R; Santos PV; Cantarero A
    Phys Rev Lett; 2005 Apr; 94(12):126805. PubMed ID: 15903949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-induced polariton superlattices.
    de Lima MM; van der Poel M; Santos PV; Hvam JM
    Phys Rev Lett; 2006 Jul; 97(4):045501. PubMed ID: 16907587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent generation of acoustic phonons in an optical microcavity.
    Lanzillotti-Kimura ND; Fainstein A; Huynh A; Perrin B; Jusserand B; Miard A; Lemaître A
    Phys Rev Lett; 2007 Nov; 99(21):217405. PubMed ID: 18233256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement of acoustical vibrations in a semiconductor planar phonon cavity.
    Trigo M; Bruchhausen A; Fainstein A; Jusserand B; Thierry-Mieg V
    Phys Rev Lett; 2002 Nov; 89(22):227402. PubMed ID: 12485103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice.
    Shinokita K; Reimann K; Woerner M; Elsaesser T; Hey R; Flytzanis C
    Phys Rev Lett; 2016 Feb; 116(7):075504. PubMed ID: 26943546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Standing optical phonons in finite semiconductor superlattices studied by resonant Raman scattering in a double microcavity.
    Fainstein A; Trigo M; Oliva D; Jusserand B; Freixanet T; Thierry-Mieg V
    Phys Rev Lett; 2001 Apr; 86(15):3411-4. PubMed ID: 11327983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent Acoustic Phonons in Colloidal Semiconductor Nanocrystal Superlattices.
    Poyser CL; Czerniuk T; Akimov A; Diroll BT; Gaulding EA; Salasyuk AS; Kent AJ; Yakovlev DR; Bayer M; Murray CB
    ACS Nano; 2016 Jan; 10(1):1163-9. PubMed ID: 26696021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent phonon optics in a chip with an electrically controlled active device.
    Poyser CL; Akimov AV; Campion RP; Kent AJ
    Sci Rep; 2015 Feb; 5():8279. PubMed ID: 25652241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.
    Yoshino S; Oohata G; Mizoguchi K
    Phys Rev Lett; 2015 Oct; 115(15):157402. PubMed ID: 26550752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon optics and phonon propagation in semiconductors.
    Narayanaamurti V
    Science; 1981 Aug; 213(4509):717-23. PubMed ID: 17834566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picosecond x-ray studies of coherent folded acoustic phonons in a multiple quantum well.
    Sondhauss P; Larsson J; Harbst M; Naylor GA; Plech A; Scheidt K; Synnergren O; Wulff M; Wark JS
    Phys Rev Lett; 2005 Apr; 94(12):125509. PubMed ID: 15903936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.
    Fainstein A; Lanzillotti-Kimura ND; Jusserand B; Perrin B
    Phys Rev Lett; 2013 Jan; 110(3):037403. PubMed ID: 23373951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: observation of phonon resonance.
    Kent AJ; Kini RN; Stanton NM; Henini M; Glavin BA; Kochelap VA; Linnik TL
    Phys Rev Lett; 2006 Jun; 96(21):215504. PubMed ID: 16803248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice.
    Beardsley RP; Akimov AV; Henini M; Kent AJ
    Phys Rev Lett; 2010 Feb; 104(8):085501. PubMed ID: 20366943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing backfolded and unfolded acoustic phonons by broadband optical light scattering.
    Maerten L; Bojahr A; Bargheer M
    Ultrasonics; 2015 Feb; 56():148-52. PubMed ID: 25241749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of coherent phonons in a CdTe single crystal using an ultrafast two-phonon laser-excitation process.
    Mizoguchi K; Morishita R; Oohata G
    Phys Rev Lett; 2013 Feb; 110(7):077402. PubMed ID: 25166406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves.
    Han H; Li B; Volz S; Kosevich YA
    Phys Rev Lett; 2015 Apr; 114(14):145501. PubMed ID: 25910135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semiconductor superlattices: a tool for terahertz acoustics.
    Huynh A; Perrin B; Lemaître A
    Ultrasonics; 2015 Feb; 56():66-79. PubMed ID: 25163800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot.
    Wigger D; Lüker S; Reiter DE; Axt VM; Machnikowski P; Kuhn T
    J Phys Condens Matter; 2014 Sep; 26(35):355802. PubMed ID: 25115958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.