These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15904015)

  • 1. Deformation electron-phonon coupling in disordered semiconductors and nanostructures.
    Sergeev A; Reizer MY; Mitin V
    Phys Rev Lett; 2005 Apr; 94(13):136602. PubMed ID: 15904015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of electron dephasing due to inelastic scattering from defects in weakly disordered AuPd wires.
    Zhong YL; Sergeev A; Chen CD; Lin JJ
    Phys Rev Lett; 2010 May; 104(20):206803. PubMed ID: 20867051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hot electron relaxation dynamics in semiconductors: assessing the strength of the electron-phonon coupling from the theoretical and experimental viewpoints.
    Sjakste J; Tanimura K; Barbarino G; Perfetti L; Vast N
    J Phys Condens Matter; 2018 Sep; 30(35):353001. PubMed ID: 30084390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optical phonon resonance scattering with spin-conserving and spin-flip processes between Landau levels in graphene.
    Wang ZW; Li ZQ; Li SS
    J Phys Condens Matter; 2014 Oct; 26(39):395302. PubMed ID: 25192437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intervalley-scattering-induced electron-phonon energy relaxation in many-valley semiconductors at low temperatures.
    Prunnila M; Kivinen P; Savin A; Törmä P; Ahopelto J
    Phys Rev Lett; 2005 Nov; 95(20):206602. PubMed ID: 16384078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-phonon relaxation in disordered two-dimensional electron gas with dynamically screened deformation potential.
    Ashraf SS; Tripathi P; Sharma AC; Hasan ST
    J Phys Condens Matter; 2009 Jan; 21(2):025504. PubMed ID: 21813981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study.
    Liao B; Qiu B; Zhou J; Huberman S; Esfarjani K; Chen G
    Phys Rev Lett; 2015 Mar; 114(11):115901. PubMed ID: 25839292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic phonon-limited resistivity of spin-orbit coupled two-dimensional electron gas: the deformation potential and piezoelectric scattering.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Jan; 25(3):035301. PubMed ID: 23221021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots.
    Kilina SV; Neukirch AJ; Habenicht BF; Kilin DS; Prezhdo OV
    Phys Rev Lett; 2013 May; 110(18):180404. PubMed ID: 23683182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-phonon coupling spectrum in photodoped pentacene crystals.
    Lee M; Schön JH; Kloc C; Batlogg B
    Phys Rev Lett; 2001 Jan; 86(5):862-5. PubMed ID: 11177959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon spectrum, electron spin-lattice relaxation and spin-phonon coupling of Cu2+ ions in BaF2 crystal.
    Hoffmann SK; Lijewski S
    J Magn Reson; 2015 Mar; 252():49-54. PubMed ID: 25655450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dephasing in carbon nanotubes due to electron-phonon coupling.
    Roche S; Jiang J; Triozon F; Saito R
    Phys Rev Lett; 2005 Aug; 95(7):076803. PubMed ID: 16196811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Apr; 142(16):164101. PubMed ID: 25933746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal broadening of the J-band in disordered linear molecular aggregates: a theoretical study.
    Heijs DJ; Malyshev VA; Knoester J
    J Chem Phys; 2005 Oct; 123(14):144507. PubMed ID: 16238407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipation induced by phonon elastic scattering in crystals.
    Li G; Ren Z; Zhang X
    Sci Rep; 2016 Sep; 6():34148. PubMed ID: 27669517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast electron-phonon coupling in hollow gold nanospheres.
    Dowgiallo AM; Knappenberger KL
    Phys Chem Chem Phys; 2011 Dec; 13(48):21585-92. PubMed ID: 22052194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio method for calculating electron-phonon scattering times in semiconductors: application to GaAs and GaP.
    Sjakste J; Vast N; Tyuterev V
    Phys Rev Lett; 2007 Dec; 99(23):236405. PubMed ID: 18233390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.