These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 15904035)

  • 1. Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction.
    Unold T; Mueller K; Lienau C; Elsaesser T; Wieck AD
    Phys Rev Lett; 2005 Apr; 94(13):137404. PubMed ID: 15904035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Dipole-Dipole Interaction in a Single Coupled-Quantum-Dot Structure via Polarized Excitation.
    Kim H; Kim I; Kyhm K; Taylor RA; Kim JS; Song JD; Je KC; Dang LS
    Nano Lett; 2016 Dec; 16(12):7755-7760. PubMed ID: 27960477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rabi oscillations of excitons in single quantum dots.
    Stievater TH; Li X; Steel DG; Gammon D; Katzer DS; Park D; Piermarocchi C; Sham LJ
    Phys Rev Lett; 2001 Sep; 87(13):133603. PubMed ID: 11580588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast near-field spectroscopy of single semiconductor quantum dots.
    Lienau C
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):861-79. PubMed ID: 15306498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An all-optical quantum gate in a semiconductor quantum dot.
    Li X; Wu Y; Steel D; Gammon D; Stievater TH; Katzer DS; Park D; Piermarocchi C; Sham LJ
    Science; 2003 Aug; 301(5634):809-11. PubMed ID: 12907794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses.
    Simon CM; Belhadj T; Chatel B; Amand T; Renucci P; Lemaitre A; Krebs O; Dalgarno PA; Warburton RJ; Marie X; Urbaszek B
    Phys Rev Lett; 2011 Apr; 106(16):166801. PubMed ID: 21599394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harvesting, Coupling, and Control of Single-Exciton Coherences in Photonic Waveguide Antennas.
    Mermillod Q; Jakubczyk T; Delmonte V; Delga A; Peinke E; Gérard JM; Claudon J; Kasprzak J
    Phys Rev Lett; 2016 Apr; 116(16):163903. PubMed ID: 27152807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of phonons for exciton and biexciton generation in an optically driven quantum dot.
    Reiter DE; Kuhn T; Glässl M; Axt VM
    J Phys Condens Matter; 2014 Oct; 26(42):423203. PubMed ID: 25273644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superradiant terahertz emission by dipolaritons.
    Kyriienko O; Kavokin AV; Shelykh IA
    Phys Rev Lett; 2013 Oct; 111(17):176401. PubMed ID: 24206504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum control study of ultrafast optical responses in semiconductor quantum dot devices.
    Huang JY; Lin CY; Liu WS; Chyi JI
    Opt Express; 2014 Dec; 22(25):30815-25. PubMed ID: 25607030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing coherent intermolecular dipole-dipole coupling in real space.
    Zhang Y; Luo Y; Zhang Y; Yu YJ; Kuang YM; Zhang L; Meng QS; Luo Y; Yang JL; Dong ZC; Hou JG
    Nature; 2016 Mar; 531(7596):623-7. PubMed ID: 27029277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation.
    Sun J; Yu W; Usman A; Isimjan TT; DGobbo S; Alarousu E; Takanabe K; Mohammed OF
    J Phys Chem Lett; 2014 Feb; 5(4):659-65. PubMed ID: 26270833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity.
    Hughes S
    Phys Rev Lett; 2005 Jun; 94(22):227402. PubMed ID: 16090437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Orientation of Excitons in a Longitudinal Magnetic Field in Indirect-Band-Gap (In,Al)As/AlAs Quantum Dots with Type-I Band Alignment.
    Shamirzaev TS; Shumilin AV; Smirnov DS; Kudlacik D; Nekrasov SV; Kusrayev YG; Yakovlev DR; Bayer M
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical RKKY interaction between charged semiconductor quantum dots.
    Piermarocchi C; Chen P; Sham LJ; Steel DG
    Phys Rev Lett; 2002 Oct; 89(16):167402. PubMed ID: 12398754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent properties of a two-level system based on a quantum-dot photodiode.
    Zrenner A; Beham E; Stufler S; Findeis F; Bichler M; Abstreiter G
    Nature; 2002 Aug; 418(6898):612-4. PubMed ID: 12167853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.