These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 15904116)
1. Bumps, breathers, and waves in a neural network with spike frequency adaptation. Coombes S; Owen MR Phys Rev Lett; 2005 Apr; 94(14):148102. PubMed ID: 15904116 [TBL] [Abstract][Full Text] [Related]
2. Neural fields with fast learning dynamic kernel. Abbassian AH; Fotouhi M; Heidari M Biol Cybern; 2012 Jan; 106(1):15-26. PubMed ID: 22399229 [TBL] [Abstract][Full Text] [Related]
3. Traveling bumps and their collisions in a two-dimensional neural field. Lu Y; Sato Y; Amari S Neural Comput; 2011 May; 23(5):1248-60. PubMed ID: 21299419 [TBL] [Abstract][Full Text] [Related]
4. Response of traveling waves to transient inputs in neural fields. Kilpatrick ZP; Ermentrout B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021910. PubMed ID: 22463247 [TBL] [Abstract][Full Text] [Related]
5. Background-activity-dependent properties of a network model for working memory that incorporates cellular bistability. Fall CP; Lewis TJ; Rinzel J Biol Cybern; 2005 Aug; 93(2):109-18. PubMed ID: 15806392 [TBL] [Abstract][Full Text] [Related]
6. Continuous neural network with windowed Hebbian learning. Fotouhi M; Heidari M; Sharifitabar M Biol Cybern; 2015 Jun; 109(3):321-32. PubMed ID: 25677526 [TBL] [Abstract][Full Text] [Related]
7. A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Burkitt AN Biol Cybern; 2006 Aug; 95(2):97-112. PubMed ID: 16821035 [TBL] [Abstract][Full Text] [Related]
8. Waves, bumps, and patterns in neural field theories. Coombes S Biol Cybern; 2005 Aug; 93(2):91-108. PubMed ID: 16059785 [TBL] [Abstract][Full Text] [Related]
9. Stationary bumps in networks of spiking neurons. Laing CR; Chow CC Neural Comput; 2001 Jul; 13(7):1473-94. PubMed ID: 11440594 [TBL] [Abstract][Full Text] [Related]
10. Bumps and oscillons in networks of spiking neurons. Schmidt H; Avitabile D Chaos; 2020 Mar; 30(3):033133. PubMed ID: 32237760 [TBL] [Abstract][Full Text] [Related]
11. Traveling waves and pulses in a one-dimensional network of excitable integrate-and-fire neurons. Bressloff PC J Math Biol; 2000 Feb; 40(2):169-98. PubMed ID: 10743600 [TBL] [Abstract][Full Text] [Related]
12. Hallucinogen persisting perception disorder in neuronal networks with adaptation. Kilpatrick ZP; Bard Ermentrout G J Comput Neurosci; 2012 Feb; 32(1):25-53. PubMed ID: 21671074 [TBL] [Abstract][Full Text] [Related]
13. Multiple-spike waves in a one-dimensional integrate-and-fire neural network. Oşan R; Curtu R; Rubin J; Ermentrout B J Math Biol; 2004 Mar; 48(3):243-74. PubMed ID: 14991232 [TBL] [Abstract][Full Text] [Related]
14. Variable timescales of repeated spike patterns in synfire chain with Mexican-hat connectivity. Hamaguchi K; Okada M; Aihara K Neural Comput; 2007 Sep; 19(9):2468-91. PubMed ID: 17650066 [TBL] [Abstract][Full Text] [Related]
15. Synchronization of an excitatory integrate-and-fire neural network. Dumont G; Henry J Bull Math Biol; 2013 Apr; 75(4):629-48. PubMed ID: 23435645 [TBL] [Abstract][Full Text] [Related]
16. Excitation of coherent oscillations in a noisy medium. Köhler J; Mayer J; Schuster HG Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021916. PubMed ID: 18352060 [TBL] [Abstract][Full Text] [Related]
17. Frequency-dependent response properties of adapting spiking neurons. Gigante G; Del Giudice P; Mattia M Math Biosci; 2007 Jun; 207(2):336-51. PubMed ID: 17367823 [TBL] [Abstract][Full Text] [Related]
18. Modeling electrocortical activity through improved local approximations of integral neural field equations. Coombes S; Venkov NA; Shiau L; Bojak I; Liley DT; Laing CR Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051901. PubMed ID: 18233681 [TBL] [Abstract][Full Text] [Related]
19. Travelling wave patterns in a model of the spinal pattern generator using spiking neurons. Kaske A; Bertschinger N Biol Cybern; 2005 Mar; 92(3):206-18. PubMed ID: 15754193 [TBL] [Abstract][Full Text] [Related]
20. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity. Takahashi YK; Kori H; Masuda N Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]