These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1590417)

  • 1. Renal adaptation to low-phosphate diet in diabetic rats.
    Abraham MI; Woods RE; Breedlove DK; Kempson SA
    Am J Physiol; 1992 May; 262(5 Pt 2):F731-6. PubMed ID: 1590417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal brush border membrane adaptation to phosphorus deprivation: effects of fasting versus low-phosphorus diet.
    Kempson SA; Shah SV; Werness PG; Berndt T; Lee PH; Smith LH; Knox FG; Dousa TP
    Kidney Int; 1980 Jul; 18(1):36-47. PubMed ID: 7218659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal adaptation to dietary phosphate deprivation: role of proximal tubule brush-border membrane fluidity.
    Levine BS; Knibloe KA; Golchini K; Hashimoto S; Kurtz I
    Am J Physiol; 1991 May; 260(5 Pt 2):F613-8. PubMed ID: 2035648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol modulates rat renal brush border membrane phosphate transport.
    Levi M; Baird BM; Wilson PV
    J Clin Invest; 1990 Jan; 85(1):231-7. PubMed ID: 1967258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat.
    Ambühl PM; Zajicek HK; Wang H; Puttaparthi K; Levi M
    Kidney Int; 1998 May; 53(5):1288-98. PubMed ID: 9573544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of glucocorticoid effect on renal transport of phosphate.
    Turner ST; Kiebzak GM; Dousa TP
    Am J Physiol; 1982 Nov; 243(5):C227-36. PubMed ID: 6753602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular mechanisms of the age-related decrease in renal phosphate reabsorption.
    Sorribas V; Lötscher M; Loffing J; Biber J; Kaissling B; Murer H; Levi M
    Kidney Int; 1996 Sep; 50(3):855-63. PubMed ID: 8872960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal adaptation to a low phosphate diet in rats.
    Shah SV; Kempson SA; Northrup TE; Dousa TP
    J Clin Invest; 1979 Oct; 64(4):955-66. PubMed ID: 479377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different mechanisms of adaptive increase in Na+-Pi cotransport across renal brush-border membrane.
    Yusufi AN; Szczepanska-Konkel M; Hoppe A; Dousa TP
    Am J Physiol; 1989 May; 256(5 Pt 2):F852-61. PubMed ID: 2524168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gamma-L-glutamyl-L-DOPA inhibits Na(+)-phosphate cotransport across renal brush border membranes and increases renal excretion of phosphate.
    de Toledo FG; Thompson MA; Bolliger C; Tyce GM; Dousa TP
    Kidney Int; 1999 May; 55(5):1832-42. PubMed ID: 10231445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex.
    Yusufi AN; Murayama N; Keller MJ; Dousa TP
    Endocrinology; 1985 Jun; 116(6):2438-49. PubMed ID: 2986951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosphingolipids modulate renal phosphate transport in potassium deficiency.
    Zajicek HK; Wang H; Puttaparthi K; Halaihel N; Markovich D; Shayman J; Béliveau R; Wilson P; Rogers T; Levi M
    Kidney Int; 2001 Aug; 60(2):694-704. PubMed ID: 11473652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal endosomal phosphate (Pi) transport in normal and diabetic rats and response to chronic Pi deprivation.
    Seifert SA; Hsiao SC; Murer H; Biber J; Kempson SA
    Cell Biochem Funct; 1997 Mar; 15(1):9-14. PubMed ID: 9075331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of microtubules in the rapid regulation of renal phosphate transport in response to acute alterations in dietary phosphate content.
    Lötscher M; Kaissling B; Biber J; Murer H; Levi M
    J Clin Invest; 1997 Mar; 99(6):1302-12. PubMed ID: 9077540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Pi diet increases the abundance of an apical protein in rat proximal-tubular S3 segments.
    Levi M; Arar M; Kaissling B; Murer H; Biber J
    Pflugers Arch; 1994 Jan; 426(1-2):5-11. PubMed ID: 8146025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal adaptation to dietary phosphate restriction in rats. Interactions with insulin and calcitriol.
    Allon M; Hruska KA
    Diabetes; 1991 Sep; 40(9):1134-40. PubMed ID: 1936621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat.
    Kempson SA; Colon-Otero G; Ou SY; Turner ST; Dousa TP
    J Clin Invest; 1981 May; 67(5):1347-60. PubMed ID: 6453134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycloheximide blocks nicotinamide action on phosphate excretion in thyroparathyroidectomized rats.
    Wu KI; Bacon RA; Kempson SA
    Miner Electrolyte Metab; 1988; 14(5):271-6. PubMed ID: 2971867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Npt2 gene ablation and low-phosphate diet on renal Na(+)/phosphate cotransport and cotransporter gene expression.
    Hoag HM; Martel J; Gauthier C; Tenenhouse HS
    J Clin Invest; 1999 Sep; 104(6):679-86. PubMed ID: 10491403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of Pi transport by BBM from superficial and juxtamedullary cortex of rat.
    Levi M
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1616-24. PubMed ID: 2141765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.