These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 15904196)
1. Fluctuation-regularized front propagation dynamics in reaction-diffusion systems. Cohen E; Kessler DA; Levine H Phys Rev Lett; 2005 Apr; 94(15):158302. PubMed ID: 15904196 [TBL] [Abstract][Full Text] [Related]
2. Front propagation up a reaction rate gradient. Cohen E; Kessler DA; Levine H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066126. PubMed ID: 16486029 [TBL] [Abstract][Full Text] [Related]
3. Fluctuation-induced instabilities in front propagation up a comoving reaction gradient in two dimensions. Wylie CS; Levine H; Kessler DA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016119. PubMed ID: 16907163 [TBL] [Abstract][Full Text] [Related]
4. Effect of environmental fluctuations on invasion fronts. Méndez V; Llopis I; Campos D; Horsthemke W J Theor Biol; 2011 Jul; 281(1):31-8. PubMed ID: 21549716 [TBL] [Abstract][Full Text] [Related]
5. Self-similar evolution of the A-island-B-island system at diffusion-controlled propagation of the sharp annihilation front: exact asymptotic solution for arbitrary species diffusivities. Shipilevsky BM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011119. PubMed ID: 20866577 [TBL] [Abstract][Full Text] [Related]
6. Velocity fluctuations of stochastic reaction fronts propagating into an unstable state: Strongly pushed fronts. Khain E; Meerson B; Sasorov P Phys Rev E; 2020 Aug; 102(2-1):022137. PubMed ID: 32942446 [TBL] [Abstract][Full Text] [Related]
9. Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources. Tang FD; Higgins AJ; Goroshin S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036311. PubMed ID: 22587184 [TBL] [Abstract][Full Text] [Related]
10. Emergence of fluctuating traveling front solutions in macroscopic theory of noisy invasion fronts. Meerson B; Vilenkin A; Sasorov PV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012117. PubMed ID: 23410293 [TBL] [Abstract][Full Text] [Related]
11. Reaction-diffusion fronts in media with spatially discrete sources. Goroshin S; Tang FD; Higgins AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):027301. PubMed ID: 21929144 [TBL] [Abstract][Full Text] [Related]
12. Kinematic reduction of reaction-diffusion fronts with multiplicative noise: derivation of stochastic sharp-interface equations. Rocco A; Ramírez-Piscina L; Casademunt J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056116. PubMed ID: 12059656 [TBL] [Abstract][Full Text] [Related]
13. Fluctuating pulled fronts: The origin and the effects of a finite particle cutoff. Panja D; van Saarloos W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036206. PubMed ID: 12366223 [TBL] [Abstract][Full Text] [Related]
14. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. Rongy L; Goyal N; Meiburg E; De Wit A J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873 [TBL] [Abstract][Full Text] [Related]
15. Speed selection mechanism for propagating fronts in reaction-diffusion systems with multiple fields. Theodorakis S; Leontidis E Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026122. PubMed ID: 11863602 [TBL] [Abstract][Full Text] [Related]
16. Front propagation in an A→2A, A→3A process in one dimension: velocity, diffusion, and velocity correlations. Kumar N; Tripathy G; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061152. PubMed ID: 21797347 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction. Rotstein HG; Zhabotinsky AM; Epstein IR Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522 [TBL] [Abstract][Full Text] [Related]
18. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations. Kordilla J; Pan W; Tartakovsky A J Chem Phys; 2014 Dec; 141(22):224112. PubMed ID: 25494737 [TBL] [Abstract][Full Text] [Related]
19. Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion. Müller J; Van Saarloos W Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061111. PubMed ID: 12188707 [TBL] [Abstract][Full Text] [Related]