These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 15904239)

  • 1. Vacancy-impurity complexes in highly Sb-doped Si grown by molecular beam epitaxy.
    Rummukainen M; Makkonen I; Ranki V; Puska MJ; Saarinen K; Gossmann HJ
    Phys Rev Lett; 2005 Apr; 94(16):165501. PubMed ID: 15904239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a new class of defects in highly n-doped Si: donor-pair-vacancy-interstitial complexes.
    Voyles PM; Chadi DJ; Citrin PH; Muller DA; Grazul JL; Northrup PA; Gossmann HJ
    Phys Rev Lett; 2003 Sep; 91(12):125505. PubMed ID: 14525374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacancy-donor complexes in highly n-type Ge doped with As, P and Sb.
    Kujala J; Südkamp T; Slotte J; Makkonen I; Tuomisto F; Bracht H
    J Phys Condens Matter; 2016 Aug; 28(33):335801. PubMed ID: 27351231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of vacancy-impurity complexes by kinetic processes in highly As-doped Si.
    Ranki V; Nissilä J; Saarinen K
    Phys Rev Lett; 2002 Mar; 88(10):105506. PubMed ID: 11909372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of thermal vacancies in highly As and P doped Si.
    Ranki V; Saarinen K
    Phys Rev Lett; 2004 Dec; 93(25):255502. PubMed ID: 15697905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent thermal behavior of impurity hydrogen trapped in vacancy-type defects in single crystal ZnO.
    Shimizu H; Sato W; Mihara M; Fujisawa T; Fukuda M; Matsuta K
    Appl Radiat Isot; 2018 Oct; 140():224-227. PubMed ID: 30059862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies.
    Park S; Park C; Kim G
    J Chem Phys; 2014 Apr; 140(13):134706. PubMed ID: 24712807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of doping Ti on the vacancy trapping mechanism for helium in ZrCo from first principles.
    Wang Q; Kong X; Yu Y; Han H; Sang G; Zhang G; Yi Y; Gao T
    Phys Chem Chem Phys; 2019 Oct; 21(37):20909-20918. PubMed ID: 31517356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacancy defects as compensating centers in Mg-doped GaN.
    Hautakangas S; Oila J; Alatalo M; Saarinen K; Liszkay L; Seghier D; Gislason HP
    Phys Rev Lett; 2003 Apr; 90(13):137402. PubMed ID: 12689324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of point defects in pulsed-laser-melted Ge
    Steuer O; Liedke MO; Butterling M; Schwarz D; Schulze J; Li Z; Wagner A; Fischer IA; Hübner R; Zhou S; Helm M; Cuniberti G; Georgiev YM; Prucnal S
    J Phys Condens Matter; 2023 Nov; 36(8):. PubMed ID: 37931296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A positron annihilation spectroscopic investigation of europium-doped cerium oxide nanoparticles.
    Thorat AV; Ghoshal T; Holmes JD; Nambissan PM; Morris MA
    Nanoscale; 2014 Jan; 6(1):608-15. PubMed ID: 24247546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si.
    Voyles PM; Muller DA; Grazul JL; Citrin PH; Gossmann HJ
    Nature; 2002 Apr; 416(6883):826-9. PubMed ID: 11976677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated Chemical and Electrically Active Dopant Analysis in Catalyst-Free Si-Doped InAs Nanowires.
    Becker J; Hill MO; Sonner M; Treu J; Döblinger M; Hirler A; Riedl H; Finley JJ; Lauhon L; Koblmüller G
    ACS Nano; 2018 Feb; 12(2):1603-1610. PubMed ID: 29385327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mn(2+)-induced substitutional structural changes in ZnS nanoparticles as observed from positron annihilation studies.
    Biswas S; Kar S; Chaudhuri S; Nambissan PM
    J Phys Condens Matter; 2008 Jun; 20(23):235226. PubMed ID: 21694317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and segregation of dopant-defect complexes at grain boundaries in nanocrystalline doped ceria.
    Dholabhai PP; Aguiar JA; Wu L; Holesinger TG; Aoki T; Castro RH; Uberuaga BP
    Phys Chem Chem Phys; 2015 Jun; 17(23):15375-85. PubMed ID: 26000664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation energies for the formation and evaporation of vacancy clusters in silicon.
    Abdulmalik DA; Coleman PG
    Phys Rev Lett; 2008 Mar; 100(9):095503. PubMed ID: 18352722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides.
    Kamisaka H; Adachi T; Yamashita K
    J Chem Phys; 2005 Aug; 123(8):084704. PubMed ID: 16164318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of nitrogen location in molecular beam epitaxy grown nitrogen-doped ZnO.
    Fons P; Tampo H; Kolobov AV; Ohkubo M; Niki S; Tominaga J; Carboni R; Boscherini F; Friedrich S
    Phys Rev Lett; 2006 Feb; 96(4):045504. PubMed ID: 16486842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insight into the interaction between divacancy and H/He impurity in Ti
    Meng Z; Wang C; Liu J; Wang Y; Zhu X; Yang L; Huang L
    Phys Chem Chem Phys; 2020 Aug; 22(32):18040-18049. PubMed ID: 32756707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size- and doping-dependent time-resolved photoluminescence of doped Si nanocrystals.
    Kim S; Hong SH; Park JH; Shin DY; Shin DH; Choi SH; Kim KJ
    Nanotechnology; 2011 Jul; 22(27):275205. PubMed ID: 21613738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.