These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optical clock with millihertz linewidth based on a phase-matching effect. Yu D; Chen J Phys Rev Lett; 2007 Feb; 98(5):050801. PubMed ID: 17358840 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice. Takamoto M; Katori H Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233 [TBL] [Abstract][Full Text] [Related]
4. Ultrastable optical clock with neutral atoms in an engineered light shift trap. Katori H; Takamoto M; Pal'chikov VG; Ovsiannikov VD Phys Rev Lett; 2003 Oct; 91(17):173005. PubMed ID: 14611343 [TBL] [Abstract][Full Text] [Related]
5. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link. Morzyński P; Bober M; Bartoszek-Bober D; Nawrocki J; Krehlik P; Śliwczyński Ł; Lipiński M; Masłowski P; Cygan A; Dunst P; Garus M; Lisak D; Zachorowski J; Gawlik W; Radzewicz C; Ciuryło R; Zawada M Sci Rep; 2015 Dec; 5():17495. PubMed ID: 26639347 [TBL] [Abstract][Full Text] [Related]
6. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms. Hong T; Cramer C; Nagourney W; Fortson EN Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624 [TBL] [Abstract][Full Text] [Related]
7. Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury. Petersen M; Chicireanu R; Dawkins ST; Magalhães DV; Mandache C; Le Coq Y; Clairon A; Bize S Phys Rev Lett; 2008 Oct; 101(18):183004. PubMed ID: 18999828 [TBL] [Abstract][Full Text] [Related]
8. Optical atomic coherence at the 1-second time scale. Boyd MM; Zelevinsky T; Ludlow AD; Foreman SM; Blatt S; Ido T; Ye J Science; 2006 Dec; 314(5804):1430-3. PubMed ID: 17138896 [TBL] [Abstract][Full Text] [Related]
9. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium. Hoyt CW; Barber ZW; Oates CW; Fortier TM; Diddams SA; Hollberg L Phys Rev Lett; 2005 Aug; 95(8):083003. PubMed ID: 16196856 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr. Mickelson PG; Martinez YN; Saenz AD; Nagel SB; Chen YC; Killian TC; Pellegrini P; Côté R Phys Rev Lett; 2005 Nov; 95(22):223002. PubMed ID: 16384214 [TBL] [Abstract][Full Text] [Related]
11. Accurate optical lattice clock with 87Sr atoms. Le Targat R; Baillard X; Fouché M; Brusch A; Tcherbakoff O; Rovera GD; Lemonde P Phys Rev Lett; 2006 Sep; 97(13):130801. PubMed ID: 17026019 [TBL] [Abstract][Full Text] [Related]
12. Observation of the 1S0-->3P0 clock transition in 27Al+. Rosenband T; Schmidt PO; Hume DB; Itano WM; Fortier TM; Stalnaker JE; Kim K; Diddams SA; Koelemeij JC; Bergquist JC; Wineland DJ Phys Rev Lett; 2007 Jun; 98(22):220801. PubMed ID: 17677830 [TBL] [Abstract][Full Text] [Related]
13. Systematic study of the 87Srclock transition in an optical lattice. Ludlow AD; Boyd MM; Zelevinsky T; Foreman SM; Blatt S; Notcutt M; Ido T; Ye J Phys Rev Lett; 2006 Jan; 96(3):033003. PubMed ID: 16486696 [TBL] [Abstract][Full Text] [Related]
14. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability. McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921 [TBL] [Abstract][Full Text] [Related]
15. Precision spectroscopy and density-dependent frequency shifts in ultracold Sr. Ido T; Loftus TH; Boyd MM; Ludlow AD; Holman KW; Ye J Phys Rev Lett; 2005 Apr; 94(15):153001. PubMed ID: 15904137 [TBL] [Abstract][Full Text] [Related]
16. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176 [TBL] [Abstract][Full Text] [Related]
17. High accuracy correction of blackbody radiation shift in an optical lattice clock. Middelmann T; Falke S; Lisdat C; Sterr U Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558 [TBL] [Abstract][Full Text] [Related]
18. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks. Blatt S; Ludlow AD; Campbell GK; Thomsen JW; Zelevinsky T; Boyd MM; Ye J; Baillard X; Fouché M; Le Targat R; Brusch A; Lemonde P; Takamoto M; Hong FL; Katori H; Flambaum VV Phys Rev Lett; 2008 Apr; 100(14):140801. PubMed ID: 18518019 [TBL] [Abstract][Full Text] [Related]
19. Laser trapping of 225Ra and 226Ra with repumping by room-temperature blackbody radiation. Guest JR; Scielzo ND; Ahmad I; Bailey K; Greene JP; Holt RJ; Lu ZT; O'Connor TP; Potterveld DH Phys Rev Lett; 2007 Mar; 98(9):093001. PubMed ID: 17359153 [TBL] [Abstract][Full Text] [Related]