These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 15904312)

  • 21. Melting and superheating in solids with volume shrinkage at melting: a molecular dynamics study of silicon.
    Zhang Q; Li Q; Li M
    J Chem Phys; 2013 Jan; 138(4):044504. PubMed ID: 23387602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic aspects of homogeneous and heterogeneous melting processes.
    Delogu F
    J Phys Chem B; 2006 Jun; 110(25):12645-52. PubMed ID: 16800597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular dynamics simulations of the melting of aluminum nanoparticles.
    Alavi S; Thompson DL
    J Phys Chem A; 2006 Feb; 110(4):1518-23. PubMed ID: 16435812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface passivation and interface properties of bulk GaAs and epitaxial-GaAs/Ge using atomic layer deposited TiAlO alloy dielectric.
    Dalapati GK; Chia CK; Tan CC; Tan HR; Chiam SY; Dong JR; Das A; Chattopadhyay S; Mahata C; Maiti CK; Chi DZ
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):949-57. PubMed ID: 23331503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The kinetics of homogeneous melting beyond the limit of superheating.
    Alfè D; Cazorla C; Gillan MJ
    J Chem Phys; 2011 Jul; 135(2):024102. PubMed ID: 21766920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ba termination of Ge(001) studied with STM.
    Koczorowski W; Grzela T; Radny MW; Schofield SR; Capellini G; Czajka R; Schroeder T; Curson NJ
    Nanotechnology; 2015 Apr; 26(15):155701. PubMed ID: 25797886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase transition of alkylsilane monolayers studied by temperature-dependent grazing incidence X-ray diffraction.
    Koga T; Honda K; Sasaki S; Sakata O; Takahara A
    Langmuir; 2007 Aug; 23(17):8861-5. PubMed ID: 17637006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calorimetry at surfaces using high-resolution core-level photoemission.
    Santucci SC; Goldoni A; Larciprete R; Lizzit S; Bertolo M; Baraldi A; Masciovecchio C
    Phys Rev Lett; 2004 Sep; 93(10):106105. PubMed ID: 15447425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature-induced density anomaly in Te-Rich liquid germanium tellurides: p versus sp3 bonding?
    Bichara C; Johnson M; Raty JY
    Phys Rev Lett; 2005 Dec; 95(26):267801. PubMed ID: 16486408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface melting of the vortex lattice.
    De Col A; Menon GI; Geshkenbein VB; Blatter G
    Phys Rev Lett; 2006 May; 96(17):177001. PubMed ID: 16712325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase transitions, melting dynamics, and solid-state diffusion in a nano test tube.
    Holmberg VC; Panthani MG; Korgel BA
    Science; 2009 Oct; 326(5951):405-7. PubMed ID: 19833963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab initio calculations of the melting temperatures of refractory bcc metals.
    Wang LG; van de Walle A
    Phys Chem Chem Phys; 2012 Jan; 14(4):1529-34. PubMed ID: 22159029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation between the variation in observed melting temperatures and structural motifs of the global minima of gallium clusters: an ab initio study.
    Susan A; Kibey A; Kaware V; Joshi K
    J Chem Phys; 2013 Jan; 138(1):014303. PubMed ID: 23298037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-plane structure and ordering at liquid sodium surfaces and interfaces from ab initio molecular dynamics.
    Walker BG; Marzari N; Molteni C
    J Chem Phys; 2007 Oct; 127(13):134703. PubMed ID: 17919039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice.
    Sánchez MA; Kling T; Ishiyama T; van Zadel MJ; Bisson PJ; Mezger M; Jochum MN; Cyran JD; Smit WJ; Bakker HJ; Shultz MJ; Morita A; Donadio D; Nagata Y; Bonn M; Backus EH
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):227-232. PubMed ID: 27956637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.
    Steenbergen KG; Gaston N
    Phys Chem Chem Phys; 2013 Oct; 15(37):15325-32. PubMed ID: 23764996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum simulation of low-temperature metallic liquid hydrogen.
    Chen J; Li XZ; Zhang Q; Probert MI; Pickard CJ; Needs RJ; Michaelides A; Wang E
    Nat Commun; 2013; 4():2064. PubMed ID: 23807128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ab initio molecular dynamical investigation of the finite temperature behavior of the tetrahedral Au19 and Au20 clusters.
    Krishnamurty S; Shafai GS; Kanhere DG; Soulé de Bas B; Ford MJ
    J Phys Chem A; 2007 Oct; 111(42):10769-75. PubMed ID: 17914783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size-dependent melting and coalescence of tungsten nanoclusters via molecular dynamics simulation.
    Liu CM; Xu C; Cheng Y; Chen XR; Cai LC
    Phys Chem Chem Phys; 2013 Sep; 15(33):14069-79. PubMed ID: 23852181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.