These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15904494)

  • 41. Purification, characterization, and reconstitution of DNA-dependent RNA polymerases from Caulobacter crescentus.
    Wu J; Ohta N; Benson AK; Ninfa AJ; Newton A
    J Biol Chem; 1997 Aug; 272(34):21558-64. PubMed ID: 9261176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and cell cycle-dependent expression of DNA replication gene dnaC from Caulobacter crescentus.
    Ohta N; Masurekar M; Newton A
    J Bacteriol; 1990 Dec; 172(12):7027-34. PubMed ID: 2174867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methylation-dependent transcriptional regulation of crescentin gene (creS) by GcrA in Caulobacter crescentus.
    Mohapatra SS; Fioravanti A; Vandame P; Spriet C; Pini F; Bompard C; Blossey R; Valette O; Biondi EG
    Mol Microbiol; 2020 Jul; 114(1):127-139. PubMed ID: 32187735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An unusual promoter controls cell-cycle regulation and dependence on DNA replication of the Caulobacter fliLM early flagellar operon.
    Stephens CM; Shapiro L
    Mol Microbiol; 1993 Sep; 9(6):1169-79. PubMed ID: 7934930
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus.
    Benson AK; Wu J; Newton A
    Res Microbiol; 1994; 145(5-6):420-30. PubMed ID: 7855428
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the promoter and a negative regulatory element, ftr4, that is needed for cell cycle timing of fliF operon expression in Caulobacter crescentus.
    Van Way SM; Newton A; Mullin AH; Mullin DA
    J Bacteriol; 1993 Jan; 175(2):367-76. PubMed ID: 8419287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conserved sequence elements upstream and downstream from the transcription initiation site of the Caulobacter crescentus rrnA gene cluster.
    Amemiya K
    J Mol Biol; 1989 Nov; 210(2):245-54. PubMed ID: 2600967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptional analysis of the Caulobacter 4.5 S RNA ffs gene and the physiological basis of an ffs mutant with a Ts phenotype.
    Winzeler E; Wheeler R; Shapiro L
    J Mol Biol; 1997 Oct; 272(5):665-76. PubMed ID: 9368649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Caulobacter DNA methyltransferase that functions only in the predivisional cell.
    Zweiger G; Marczynski G; Shapiro L
    J Mol Biol; 1994 Jan; 235(2):472-85. PubMed ID: 8289276
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle.
    Sackett MJ; Kelly AJ; Brun YV
    Mol Microbiol; 1998 May; 28(3):421-34. PubMed ID: 9632248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An alkB gene homolog is differentially transcribed during the Caulobacter crescentus cell cycle.
    Colombi D; Gomes SL
    J Bacteriol; 1997 May; 179(10):3139-45. PubMed ID: 9150207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The HfaB and HfaD adhesion proteins of Caulobacter crescentus are localized in the stalk.
    Cole JL; Hardy GG; Bodenmiller D; Toh E; Hinz A; Brun YV
    Mol Microbiol; 2003 Sep; 49(6):1671-83. PubMed ID: 12950929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus.
    Hallgren J; Koonce K; Felletti M; Mortier J; Turco E; Jonas K
    PLoS Genet; 2023 Nov; 19(11):e1010882. PubMed ID: 38011258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of Caulobacter crescentus ilvBN gene expression.
    Tarleton JC; Malakooti J; Ely B
    J Bacteriol; 1994 Jun; 176(12):3765-74. PubMed ID: 8206855
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell cycle regulation in Caulobacter: location, location, location.
    Goley ED; Iniesta AA; Shapiro L
    J Cell Sci; 2007 Oct; 120(Pt 20):3501-7. PubMed ID: 17928306
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus.
    Gonzalez D; Collier J
    J Bacteriol; 2014 Jul; 196(14):2514-25. PubMed ID: 24794566
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DNA replication initiation is required for mid-cell positioning of FtsZ rings in Caulobacter crescentus.
    Quardokus EM; Brun YV
    Mol Microbiol; 2002 Aug; 45(3):605-16. PubMed ID: 12139609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmid and chromosomal DNA replication and partitioning during the Caulobacter crescentus cell cycle.
    Marczynski GT; Dingwall A; Shapiro L
    J Mol Biol; 1990 Apr; 212(4):709-22. PubMed ID: 2329579
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle.
    Holtzendorff J; Hung D; Brende P; Reisenauer A; Viollier PH; McAdams HH; Shapiro L
    Science; 2004 May; 304(5673):983-7. PubMed ID: 15087506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Small non-coding RNAs in Caulobacter crescentus.
    Landt SG; Abeliuk E; McGrath PT; Lesley JA; McAdams HH; Shapiro L
    Mol Microbiol; 2008 May; 68(3):600-14. PubMed ID: 18373523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.