These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 15904663)
1. Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. Thennarasu S; Lee DK; Tan A; Prasad Kari U; Ramamoorthy A Biochim Biophys Acta; 2005 Jun; 1711(1):49-58. PubMed ID: 15904663 [TBL] [Abstract][Full Text] [Related]
2. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Ramamoorthy A; Thennarasu S; Lee DK; Tan A; Maloy L Biophys J; 2006 Jul; 91(1):206-16. PubMed ID: 16603496 [TBL] [Abstract][Full Text] [Related]
3. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367. Thennarasu S; Huang R; Lee DK; Yang P; Maloy L; Chen Z; Ramamoorthy A Biochemistry; 2010 Dec; 49(50):10595-605. PubMed ID: 21062093 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
5. Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. Domadia PN; Bhunia A; Ramamoorthy A; Bhattacharjya S J Am Chem Soc; 2010 Dec; 132(51):18417-28. PubMed ID: 21128620 [TBL] [Abstract][Full Text] [Related]
6. Cell selectivity correlates with membrane-specific interactions: a case study on the antimicrobial peptide G15 derived from granulysin. Ramamoorthy A; Thennarasu S; Tan A; Lee DK; Clayberger C; Krensky AM Biochim Biophys Acta; 2006 Feb; 1758(2):154-63. PubMed ID: 16579960 [TBL] [Abstract][Full Text] [Related]
7. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Wieprecht T; Apostolov O; Beyermann M; Seelig J Biochemistry; 2000 Jan; 39(2):442-52. PubMed ID: 10631006 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Thennarasu S; Tan A; Penumatchu R; Shelburne CE; Heyl DL; Ramamoorthy A Biophys J; 2010 Jan; 98(2):248-57. PubMed ID: 20338846 [TBL] [Abstract][Full Text] [Related]
9. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
10. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Hallock KJ; Lee DK; Ramamoorthy A Biophys J; 2003 May; 84(5):3052-60. PubMed ID: 12719236 [TBL] [Abstract][Full Text] [Related]
11. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
12. Interactions of the antimicrobial peptide Ac-FRWWHR-NH(2) with model membrane systems and bacterial cells. Rezansoff AJ; Hunter HN; Jing W; Park IY; Kim SC; Vogel HJ J Pept Res; 2005 May; 65(5):491-501. PubMed ID: 15853943 [TBL] [Abstract][Full Text] [Related]
13. Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Thennarasu S; Lee DK; Poon A; Kawulka KE; Vederas JC; Ramamoorthy A Chem Phys Lipids; 2005 Oct; 137(1-2):38-51. PubMed ID: 16095584 [TBL] [Abstract][Full Text] [Related]
14. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552 [TBL] [Abstract][Full Text] [Related]
15. General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Dathe M; Meyer J; Beyermann M; Maul B; Hoischen C; Bienert M Biochim Biophys Acta; 2002 Feb; 1558(2):171-86. PubMed ID: 11779567 [TBL] [Abstract][Full Text] [Related]
16. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
17. Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity. Bagheri M; Keller S; Dathe M Antimicrob Agents Chemother; 2011 Feb; 55(2):788-97. PubMed ID: 21098244 [TBL] [Abstract][Full Text] [Related]
18. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Wieprecht T; Dathe M; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M Biochemistry; 1997 May; 36(20):6124-32. PubMed ID: 9166783 [TBL] [Abstract][Full Text] [Related]
19. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
20. Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Ma QQ; Dong N; Shan AS; Lv YF; Li YZ; Chen ZH; Cheng BJ; Li ZY Amino Acids; 2012 Dec; 43(6):2527-36. PubMed ID: 22699557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]