These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 1590471)

  • 21. Comparison of in vivo with in vitro pharmacokinetics of mercury between methylmercury chloride and methylmercury cysteine using rats and Caco2 cells.
    Mori N; Yamamoto M; Tsukada E; Yokooji T; Matsumura N; Sasaki M; Murakami T
    Arch Environ Contam Toxicol; 2012 Nov; 63(4):628-36. PubMed ID: 22932937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uptake of methylmercury cysteine by rat erythrocytes at lower temperature.
    Wu G
    J Appl Toxicol; 1996; 16(2):95-102. PubMed ID: 8935781
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat.
    Kannan R; Kuhlenkamp JF; Jeandidier E; Trinh H; Ookhtens M; Kaplowitz N
    J Clin Invest; 1990 Jun; 85(6):2009-13. PubMed ID: 1971830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of dietary levels of protein and sulfur amino acids on the fate of methylmercury in mice.
    Adachi T; Yasutake A; Hirayama K
    Toxicology; 1994 Nov; 93(2-3):225-34. PubMed ID: 7974516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methylmercury-cysteine uptake by rat erythrocytes: evidence for several transport systems.
    Wu G
    J Appl Toxicol; 1996; 16(1):77-83. PubMed ID: 8821680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for an alanine, serine, and cysteine system of transport in isolated brain capillaries.
    Tayarani I; Lefauconnier JM; Roux F; Bourre JM
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):585-91. PubMed ID: 3116007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of amino acid transport systems in cultured human umbilical vein endothelial cells.
    Mann GE; Pearson JD; Sheriff CJ; Toothill VJ
    J Physiol; 1989 Mar; 410():325-39. PubMed ID: 2677320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening of potential transport systems for methyl mercury uptake in rat erythrocytes at 5 degrees by use of inhibitors and substrates.
    Wu G
    Pharmacol Toxicol; 1995 Sep; 77(3):169-76. PubMed ID: 8884879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of methylmercury and inorganic mercury in neonate hamsters dosed with methylmercury during fetal life.
    Oliveira RB; Malm O; Guimarães JR
    Environ Res; 2001 May; 86(1):73-9. PubMed ID: 11386744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilitated transport of the neurotoxin, beta-N-methylamino-L-alanine, across the blood-brain barrier.
    Smith QR; Nagura H; Takada Y; Duncan MW
    J Neurochem; 1992 Apr; 58(4):1330-7. PubMed ID: 1548467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of AAT transporters in methylmercury toxicity in Caenorhabditis elegans.
    Caito SW; Zhang Y; Aschner M
    Biochem Biophys Res Commun; 2013 Jun; 435(4):546-50. PubMed ID: 23669041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The methylmercury-L-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter.
    Yin Z; Jiang H; Syversen T; Rocha JB; Farina M; Aschner M
    J Neurochem; 2008 Nov; 107(4):1083-90. PubMed ID: 18793329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of L-type-like amino acid transporters in S-nitrosocysteine-stimulated noradrenaline release in the rat hippocampus.
    Satoh S; Kimura T; Toda M; Maekawa M; Ono S; Narita H; Miyazaki H; Murayama T; Nomura Y
    J Neurochem; 1997 Nov; 69(5):2197-205. PubMed ID: 9349567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of toxic metals by molecular mimicry.
    Ballatori N
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):689-94. PubMed ID: 12426113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism.
    Roos DH; Puntel RL; Farina M; Aschner M; Bohrer D; Rocha JB; de Vargas Barbosa NB
    Toxicol Appl Pharmacol; 2011 Apr; 252(1):28-35. PubMed ID: 21276810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine.
    Langen KJ; Mühlensiepen H; Holschbach M; Hautzel H; Jansen P; Coenen HH
    J Nucl Med; 2000 Jul; 41(7):1250-5. PubMed ID: 10914918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of cysteine uptake in intestinal basolateral membrane vesicles.
    Lash LH; Jones DP
    Am J Physiol; 1984 Oct; 247(4 Pt 1):G394-401. PubMed ID: 6496678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system.
    Greig NH; Momma S; Sweeney DJ; Smith QR; Rapoport SI
    Cancer Res; 1987 Mar; 47(6):1571-6. PubMed ID: 3815357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blood-brain barrier transport of 1-aminocyclohexanecarboxylic acid, a nonmetabolizable amino acid for in vivo studies of brain transport.
    Aoyagi M; Agranoff BW; Washburn LC; Smith QR
    J Neurochem; 1988 Apr; 50(4):1220-6. PubMed ID: 3346675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine transport in rat liver canalicular membrane vesicles: potential reabsorption mechanisms for biliary metabolites of glutathione and its S-conjugates.
    Simmons TW; Anders MW; Ballatori N
    J Pharmacol Exp Ther; 1992 Sep; 262(3):1182-8. PubMed ID: 1527723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.