These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 15904869)
1. Transient changes in the expression pattern of key enzymes for bile acid synthesis during rat liver regeneration. Monte MJ; Fernandez-Tagarro M; Marin JJ Biochim Biophys Acta; 2005 May; 1734(2):127-35. PubMed ID: 15904869 [TBL] [Abstract][Full Text] [Related]
2. Changes in the expression of genes related to bile acid synthesis and transport by the rat liver during hepatocarcinogenesis. Monte MJ; Fernandez-Tagarro M; Macias RI; Jimenez F; Gonzalez-San Martin F; Marin JJ Clin Sci (Lond); 2005 Aug; 109(2):199-207. PubMed ID: 15853769 [TBL] [Abstract][Full Text] [Related]
3. Bile acid secretion during synchronized rat liver regeneration. Monte MJ; El-Mir MY; Sainz GR; Bravo P; Marin JJ Biochim Biophys Acta; 1997 Nov; 1362(1):56-66. PubMed ID: 9434100 [TBL] [Abstract][Full Text] [Related]
4. Ontogenic development-associated changes in the expression of genes involved in rat bile acid homeostasis. Cuesta de Juan S; Monte MJ; Macias RI; Wauthier V; Calderon PB; Marin JJ J Lipid Res; 2007 Jun; 48(6):1362-70. PubMed ID: 17332599 [TBL] [Abstract][Full Text] [Related]
5. Changes in the pool of bile acids in hepatocyte nuclei during rat liver regeneration. Monte MJ; Martinez-Diez MC; El-Mir MY; Mendoza ME; Bravo P; Bachs O; Marin JJ J Hepatol; 2002 Apr; 36(4):534-42. PubMed ID: 11943426 [TBL] [Abstract][Full Text] [Related]
6. A GAPDH-mediated trans-nitrosylation pathway is required for feedback inhibition of bile salt synthesis in rat liver. Rodríguez-Ortigosa CM; Celay J; Olivas I; Juanarena N; Arcelus S; Uriarte I; Marín JJ; Avila MA; Medina JF; Prieto J Gastroenterology; 2014 Nov; 147(5):1084-93. PubMed ID: 25066374 [TBL] [Abstract][Full Text] [Related]
7. Insufficient bile acid signaling impairs liver repair in CYP27(-/-) mice. Meng Z; Liu N; Fu X; Wang X; Wang YD; Chen WD; Zhang L; Forman BM; Huang W J Hepatol; 2011 Oct; 55(4):885-95. PubMed ID: 21334403 [TBL] [Abstract][Full Text] [Related]
8. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. Hu X; Bonde Y; Eggertsen G; Rudling M J Intern Med; 2014 Jan; 275(1):27-38. PubMed ID: 24118394 [TBL] [Abstract][Full Text] [Related]
9. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol. Chow EC; Magomedova L; Quach HP; Patel R; Durk MR; Fan J; Maeng HJ; Irondi K; Anakk S; Moore DD; Cummins CL; Pang KS Gastroenterology; 2014 Apr; 146(4):1048-59. PubMed ID: 24365583 [TBL] [Abstract][Full Text] [Related]
10. Foetal 'flat' bile acids reappear during human liver regeneration after surgery. Stärkel P; Shindano T; Horsmans Y; Gigot JF; Fernandez-Tagarro M; Marin JJ; Monte MJ Eur J Clin Invest; 2009 Jan; 39(1):58-64. PubMed ID: 19087130 [TBL] [Abstract][Full Text] [Related]
11. Bile acid promotes liver regeneration via farnesoid X receptor signaling pathways in rats. Ding L; Yang Y; Qu Y; Yang T; Wang K; Liu W; Xia W Mol Med Rep; 2015 Jun; 11(6):4431-7. PubMed ID: 25634785 [TBL] [Abstract][Full Text] [Related]
12. Reduction in bile acid pool causes delayed liver regeneration accompanied by down-regulated expression of FXR and c-Jun mRNA in rats. Dong X; Zhao H; Ma X; Wang S J Huazhong Univ Sci Technolog Med Sci; 2010 Feb; 30(1):55-60. PubMed ID: 20155456 [TBL] [Abstract][Full Text] [Related]
13. Farnesoid X receptor-induced lysine-specific histone demethylase reduces hepatic bile acid levels and protects the liver against bile acid toxicity. Kim YC; Fang S; Byun S; Seok S; Kemper B; Kemper JK Hepatology; 2015 Jul; 62(1):220-31. PubMed ID: 25545350 [TBL] [Abstract][Full Text] [Related]
14. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures. Liu J; Lu H; Lu YF; Lei X; Cui JY; Ellis E; Strom SC; Klaassen CD Toxicol Sci; 2014 Oct; 141(2):538-46. PubMed ID: 25055961 [TBL] [Abstract][Full Text] [Related]
15. Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Vaquero J; Monte MJ; Dominguez M; Muntané J; Marin JJ Biochem Pharmacol; 2013 Oct; 86(7):926-39. PubMed ID: 23928191 [TBL] [Abstract][Full Text] [Related]
16. Lack of Abcc3 expression impairs bile-acid induced liver growth and delays hepatic regeneration after partial hepatectomy in mice. Fernández-Barrena MG; Monte MJ; Latasa MU; Uriarte I; Vicente E; Chang HC; Rodriguez-Ortigosa CM; Elferink RO; Berasain C; Marin JJ; Prieto J; Ávila MA J Hepatol; 2012 Feb; 56(2):367-73. PubMed ID: 21756856 [TBL] [Abstract][Full Text] [Related]
17. The hypocholesterolemic activity of Momordica charantia fruit is mediated by the altered cholesterol- and bile acid-regulating gene expression in rat liver. Matsui S; Yamane T; Takita T; Oishi Y; Kobayashi-Hattori K Nutr Res; 2013 Jul; 33(7):580-5. PubMed ID: 23827133 [TBL] [Abstract][Full Text] [Related]
18. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration. Li G; L Guo G Acta Pharm Sin B; 2015 Mar; 5(2):93-8. PubMed ID: 26579433 [TBL] [Abstract][Full Text] [Related]
19. Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Ellis E; Axelson M; Abrahamsson A; Eggertsen G; Thörne A; Nowak G; Ericzon BG; Björkhem I; Einarsson C Hepatology; 2003 Oct; 38(4):930-8. PubMed ID: 14512880 [TBL] [Abstract][Full Text] [Related]
20. FXR-dependent and -independent interaction of glucocorticoids with the regulatory pathways involved in the control of bile acid handling by the liver. Rosales R; Romero MR; Vaquero J; Monte MJ; Requena P; Martinez-Augustin O; Sanchez de Medina F; Marin JJ Biochem Pharmacol; 2013 Mar; 85(6):829-38. PubMed ID: 23313557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]