These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 15904888)

  • 21. Recent progress in the determination of solid surface tensions from contact angles.
    Tavana H; Neumann AW
    Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Status of the three-phase line tension: a review.
    Amirfazli A; Neumann AW
    Adv Colloid Interface Sci; 2004 Aug; 110(3):121-41. PubMed ID: 15328061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of different methods to measure contact angles of soil colloids.
    Shang J; Flury M; Harsh JB; Zollars RL
    J Colloid Interface Sci; 2008 Dec; 328(2):299-307. PubMed ID: 18930239
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaporation-induced particle microseparations inside droplets floating on a chip.
    Chang ST; Velev OD
    Langmuir; 2006 Feb; 22(4):1459-68. PubMed ID: 16460062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability.
    Fang G; Li W; Wang X; Qiao G
    Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces without use of apex coordinates.
    Cabezas MG; Bateni A; Montanero JM; Neumann AW
    Langmuir; 2006 Nov; 22(24):10053-60. PubMed ID: 17106999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the corrugation of the three-phase contact line perpendicular to a chemically striped substrate.
    Ruiz-Cabello FJ; Kusumaatmaja H; Rodríguez-Valverde MA; Yeomans J; Cabrerizo-Vílchez MA
    Langmuir; 2009 Jul; 25(14):8357-61. PubMed ID: 19594192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface free energy and wettability of silyl layers on silicon determined from contact angle hysteresis.
    Chibowski EJ
    Adv Colloid Interface Sci; 2005 May; 113(2-3):121-31. PubMed ID: 15935143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces.
    Iwamatsu M
    J Colloid Interface Sci; 2006 May; 297(2):772-7. PubMed ID: 16337219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dynamics of impacting water droplets on alkanethiol self-assembled monolayers with co-adsorbed CH3 and CO2H terminal groups.
    Ukiwe C; Mansouri A; Kwok DY
    J Colloid Interface Sci; 2005 May; 285(2):760-8. PubMed ID: 15837495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detachment of liquid droplets from fibres--experimental and theoretical evaluation of detachment force due to interfacial tension effects.
    Mullins BJ; Pfrang A; Braddock RD; Schimmel T; Kasper G
    J Colloid Interface Sci; 2007 Aug; 312(2):333-40. PubMed ID: 17448493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of a spray scrubber performance with Eulerian/Lagrangian approach in the aerosol removing process.
    Bozorgi Y; Keshavarz P; Taheri M; Fathikaljahi J
    J Hazard Mater; 2006 Sep; 137(1):509-17. PubMed ID: 16600492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanofluid surface wettability through asymptotic contact angle.
    Vafaei S; Wen D; Borca-Tasciuc T
    Langmuir; 2011 Mar; 27(6):2211-8. PubMed ID: 21338112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Static and dynamic electrowetting of an ionic liquid in a solid/liquid/liquid system.
    Paneru M; Priest C; Sedev R; Ralston J
    J Am Chem Soc; 2010 Jun; 132(24):8301-8. PubMed ID: 20507151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An empirically validated analytical model of droplet dynamics in electrowetting on dielectric devices.
    Schertzer MJ; Gubarenko SI; Ben-Mrad R; Sullivan PE
    Langmuir; 2010 Dec; 26(24):19230-8. PubMed ID: 21080633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Displacement of liquid droplets on a surface by a shearing air flow.
    Fan J; Wilson MC; Kapur N
    J Colloid Interface Sci; 2011 Apr; 356(1):286-92. PubMed ID: 21281938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of submicron particles on electrowetting on dielectrics (EWOD) of sessile droplets.
    Chakraborty D; Sudha GS; Chakraborty S; DasGupta S
    J Colloid Interface Sci; 2011 Nov; 363(2):640-5. PubMed ID: 21855084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Statics and dynamics of a cylindrical droplet under an external body force.
    Servantie J; Müller M
    J Chem Phys; 2008 Jan; 128(1):014709. PubMed ID: 18190214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Small-scale particle advection, manipulation and mixing: beyond the hydrodynamic scale.
    Straube AV
    J Phys Condens Matter; 2011 May; 23(18):184122. PubMed ID: 21508483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.