These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 15905112)
1. Biotin availability regulates expression of the sodium-dependent multivitamin transporter and the rate of biotin uptake in HepG2 cells. Pacheco-Alvarez D; Solórzano-Vargas RS; González-Noriega A; Michalak C; Zempleni J; León-Del-Río A Mol Genet Metab; 2005 Aug; 85(4):301-7. PubMed ID: 15905112 [TBL] [Abstract][Full Text] [Related]
2. Biotin supply affects rates of cell proliferation, biotinylation of carboxylases and histones, and expression of the gene encoding the sodium-dependent multivitamin transporter in JAr choriocarcinoma cells. Crisp SE; Griffin JB; White BR; Toombs CF; Camporeale G; Said HM; Zempleni J Eur J Nutr; 2004 Feb; 43(1):23-31. PubMed ID: 14991266 [TBL] [Abstract][Full Text] [Related]
3. Biotin-dependent regulation of gene expression in human cells. León-Del-Río A J Nutr Biochem; 2005 Jul; 16(7):432-4. PubMed ID: 15992685 [TBL] [Abstract][Full Text] [Related]
4. Biotin uptake by T47D breast cancer cells: functional and molecular evidence of sodium-dependent multivitamin transporter (SMVT). Vadlapudi AD; Vadlapatla RK; Pal D; Mitra AK Int J Pharm; 2013 Jan; 441(1-2):535-43. PubMed ID: 23142496 [TBL] [Abstract][Full Text] [Related]
5. Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. Balamurugan K; Ortiz A; Said HM Am J Physiol Gastrointest Liver Physiol; 2003 Jul; 285(1):G73-7. PubMed ID: 12646417 [TBL] [Abstract][Full Text] [Related]
6. Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Janoria KG; Hariharan S; Paturi D; Pal D; Mitra AK Curr Eye Res; 2006 Oct; 31(10):797-809. PubMed ID: 17038304 [TBL] [Abstract][Full Text] [Related]
7. Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Solórzano-Vargas RS; Pacheco-Alvarez D; León-Del-Río A Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5325-30. PubMed ID: 11959985 [TBL] [Abstract][Full Text] [Related]
8. Blood-to-retina transport of biotin via Na+-dependent multivitamin transporter (SMVT) at the inner blood-retinal barrier. Ohkura Y; Akanuma S; Tachikawa M; Hosoya K Exp Eye Res; 2010 Sep; 91(3):387-92. PubMed ID: 20599968 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of ontogenic changes in renal and intestinal biotin transport in the rat. Nabokina SM; Subramanian VS; Said HM Am J Physiol Renal Physiol; 2003 Apr; 284(4):F737-42. PubMed ID: 12620923 [TBL] [Abstract][Full Text] [Related]
10. Molecular expression and functional activity of sodium dependent multivitamin transporter in human prostate cancer cells. Patel M; Vadlapatla RK; Shah S; Mitra AK Int J Pharm; 2012 Oct; 436(1-2):324-31. PubMed ID: 22732670 [TBL] [Abstract][Full Text] [Related]
11. Sodium-dependent multivitamin transporter gene is regulated at the chromatin level by histone biotinylation in human Jurkat lymphoblastoma cells. Zempleni J; Gralla M; Camporeale G; Hassan YI J Nutr; 2009 Jan; 139(1):163-6. PubMed ID: 19056636 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanisms involved in the adaptive regulation of human intestinal biotin uptake: A study of the hSMVT system. Reidling JC; Nabokina SM; Said HM Am J Physiol Gastrointest Liver Physiol; 2007 Jan; 292(1):G275-81. PubMed ID: 16959947 [TBL] [Abstract][Full Text] [Related]
13. The blood-brain barrier sodium-dependent multivitamin transporter: a molecular functional in vitro-in situ correlation. Park S; Sinko PJ Drug Metab Dispos; 2005 Oct; 33(10):1547-54. PubMed ID: 16033951 [TBL] [Abstract][Full Text] [Related]
14. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells. Adragna NC; Zhang J; Di Fulvio M; Lincoln TM; Lauf PK J Membr Biol; 2002 May; 187(2):157-65. PubMed ID: 12029372 [TBL] [Abstract][Full Text] [Related]
15. Electrogenic nature of rat sodium-dependent multivitamin transport. Prasad PD; Srinivas SR; Wang H; Leibach FH; Devoe LD; Ganapathy V Biochem Biophys Res Commun; 2000 Apr; 270(3):836-40. PubMed ID: 10772912 [TBL] [Abstract][Full Text] [Related]
16. Holocarboxylase synthetase regulates expression of biotin transporters by chromatin remodeling events at the SMVT locus. Gralla M; Camporeale G; Zempleni J J Nutr Biochem; 2008 Jun; 19(6):400-8. PubMed ID: 17904341 [TBL] [Abstract][Full Text] [Related]
17. Biotin uptake by human proximal tubular epithelial cells: cellular and molecular aspects. Balamurugan K; Vaziri ND; Said HM Am J Physiol Renal Physiol; 2005 Apr; 288(4):F823-31. PubMed ID: 15561972 [TBL] [Abstract][Full Text] [Related]
18. Biotin requirements are lower in human Jurkat lymphoid cells but homeostatic mechanisms are similar to those of HepG2 liver cells. Mall GK; Chew YC; Zempleni J J Nutr; 2010 Jun; 140(6):1086-92. PubMed ID: 20357078 [TBL] [Abstract][Full Text] [Related]
19. Biotin uptake and cellular translocation in human derived retinoblastoma cell line (Y-79): a role of hSMVT system. Kansara V; Luo S; Balasubrahmanyam B; Pal D; Mitra AK Int J Pharm; 2006 Apr; 312(1-2):43-52. PubMed ID: 16459033 [TBL] [Abstract][Full Text] [Related]
20. Susceptibility to heat stress and aberrant gene expression patterns in holocarboxylase synthetase-deficient Drosophila melanogaster are caused by decreased biotinylation of histones, not of carboxylases. Camporeale G; Zempleni J; Eissenberg JC J Nutr; 2007 Apr; 137(4):885-9. PubMed ID: 17374649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]