BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 15905360)

  • 1. Antagonist- and inverse agonist-driven interactions of the vitamin D receptor and the constitutive androstane receptor with corepressor protein.
    Lempiäinen H; Molnár F; Macias Gonzalez M; Peräkylä M; Carlberg C
    Mol Endocrinol; 2005 Sep; 19(9):2258-72. PubMed ID: 15905360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical role of helix 12 of the vitamin D(3) receptor for the partial agonism of carboxylic ester antagonists.
    Väisänen S; Peräkylä M; Kärkkäinen JI; Steinmeyer A; Carlberg C
    J Mol Biol; 2002 Jan; 315(2):229-38. PubMed ID: 11779241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The critical role of carboxy-terminal amino acids in ligand-dependent and -independent transactivation of the constitutive androstane receptor.
    Andersin T; Väisänen S; Carlberg C
    Mol Endocrinol; 2003 Feb; 17(2):234-46. PubMed ID: 12554751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist-triggered modulation of the activated and silent state of the vitamin D(3) receptor by interaction with co-repressors and co-activators.
    Herdick M; Carlberg C
    J Mol Biol; 2000 Dec; 304(5):793-801. PubMed ID: 11124027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corepressor excess shifts the two-side chain vitamin D analog Gemini from an agonist to an inverse agonist of the vitamin D receptor.
    Gonzalez MM; Samenfeld P; Peräkylä M; Carlberg C
    Mol Endocrinol; 2003 Oct; 17(10):2028-38. PubMed ID: 12843209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-dependent and agonist-independent transactivations of the human constitutive androstane receptor are modulated by specific amino acid pairs.
    Frank C; Molnár F; Matilainen M; Lempiäinen H; Carlberg C
    J Biol Chem; 2004 Aug; 279(32):33558-66. PubMed ID: 15151997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-mediated conformational changes of the VDR are required for gene transactivation.
    Carlberg C
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):227-32. PubMed ID: 15225776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxylic ester antagonists of 1alpha,25-dihydroxyvitamin D(3) show cell-specific actions.
    Herdick M; Steinmeyer A; Carlberg C
    Chem Biol; 2000 Nov; 7(11):885-94. PubMed ID: 11094341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural basis for the species-specific antagonism of 26,23-lactones on vitamin D signaling.
    Peräkylä M; Molnár F; Carlberg C
    Chem Biol; 2004 Aug; 11(8):1147-56. PubMed ID: 15324816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations for human CAR inverse agonists.
    Jyrkkärinne J; Küblbeck J; Pulkkinen J; Honkakoski P; Laatikainen R; Poso A; Laitinen T
    J Chem Inf Model; 2012 Feb; 52(2):457-64. PubMed ID: 22233089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of a novel corepressor interaction region in RVR and Rev-erbA alpha.
    Burke LJ; Downes M; Laudet V; Muscat GE
    Mol Endocrinol; 1998 Feb; 12(2):248-62. PubMed ID: 9482666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orphan nuclear receptor binding site in the human inducible nitric oxide synthase promoter mediates responsiveness to steroid and xenobiotic ligands.
    Toell A; Kröncke KD; Kleinert H; Carlberg C
    J Cell Biochem; 2002; 85(1):72-82. PubMed ID: 11891851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role of helix 12 of the vitamin D receptor in SMRT corepressor interaction.
    Kim JY; Son YL; Lee YC
    Biochem Biophys Res Commun; 2009 Feb; 379(3):780-4. PubMed ID: 19133230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha.
    Xu HE; Stanley TB; Montana VG; Lambert MH; Shearer BG; Cobb JE; McKee DD; Galardi CM; Plunket KD; Nolte RT; Parks DJ; Moore JT; Kliewer SA; Willson TM; Stimmel JB
    Nature; 2002 Feb; 415(6873):813-7. PubMed ID: 11845213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ligand-induced heterodimerization and coactivator interaction by the activation function-2 domain of the vitamin D receptor.
    Liu YY; Nguyen C; Peleg S
    Mol Endocrinol; 2000 Nov; 14(11):1776-87. PubMed ID: 11075811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the human CAR ligand-binding domain: deciphering the molecular basis for constitutive activity.
    Windshügel B; Jyrkkärinne J; Poso A; Honkakoski P; Sippl W
    J Mol Model; 2005 Feb; 11(1):69-79. PubMed ID: 15616833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular determinants of nuclear receptor-corepressor interaction.
    Perissi V; Staszewski LM; McInerney EM; Kurokawa R; Krones A; Rose DW; Lambert MH; Milburn MV; Glass CK; Rosenfeld MG
    Genes Dev; 1999 Dec; 13(24):3198-208. PubMed ID: 10617569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the selective activity of vitamin D analogues.
    Carlberg C
    J Cell Biochem; 2003 Feb; 88(2):274-81. PubMed ID: 12520526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TR surfaces and conformations required to bind nuclear receptor corepressor.
    Marimuthu A; Feng W; Tagami T; Nguyen H; Jameson JL; Fletterick RJ; Baxter JD; West BL
    Mol Endocrinol; 2002 Feb; 16(2):271-86. PubMed ID: 11818500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtype specific effects of peroxisome proliferator-activated receptor ligands on corepressor affinity.
    Stanley TB; Leesnitzer LM; Montana VG; Galardi CM; Lambert MH; Holt JA; Xu HE; Moore LB; Blanchard SG; Stimmel JB
    Biochemistry; 2003 Aug; 42(31):9278-87. PubMed ID: 12899614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.