These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 15905769)

  • 21. Crevice and fretting corrosion of stainless-steel plates and screws.
    Brown SA; Simpson JP
    J Biomed Mater Res; 1981 Nov; 15(6):867-78. PubMed ID: 7309768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of in vivo corrosion of 316L stainless steel posterior thoracolumbar plate systems: a retrieval study.
    Majid K; Crowder T; Baker E; Baker K; Koueiter D; Shields E; Herkowitz HN
    J Spinal Disord Tech; 2011 Dec; 24(8):500-5. PubMed ID: 21336173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of fretting corrosion of Ti-6Al-4V by various surface treatments.
    Maurer AM; Brown SA; Payer JH; Merritt K; Kawalec JS
    J Orthop Res; 1993 Nov; 11(6):865-73. PubMed ID: 8283332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic resonance imaging evaluation of the spine with metal implants. General safety and superior imaging with titanium.
    Rupp R; Ebraheim NA; Savolaine ER; Jackson WT
    Spine (Phila Pa 1976); 1993 Mar; 18(3):379-85. PubMed ID: 8475442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical testing of a smart spinal implant locking mechanism based on nickel-titanium alloy.
    Yeung KW; Lu WW; Luk KD; Cheung KM
    Spine (Phila Pa 1976); 2006 Sep; 31(20):2296-303. PubMed ID: 16985456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.
    Syrett BC; Davis EE
    J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical assessment of titanium and stainless steel posterior spinal constructs: effects of absolute/relative loading and frequency on fatigue life and determination of failure modes.
    Stambough JL; Genaidy AM; Huston RL; Serhan H; El-khatib F; Sabri EH
    J Spinal Disord; 1997 Dec; 10(6):473-81. PubMed ID: 9438811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation.
    Liu Y; Zhu D; Pierre D; Gilbert JL
    Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The corrosion fatigue properties of surgical implants in a living body.
    Morita M; Sasada T; Hayashi H; Tsukamoto Y
    J Biomed Mater Res; 1988 Jun; 22(6):529-40. PubMed ID: 3410871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys.
    Lemons JE; Niemann KM; Weiss AB
    J Biomed Mater Res; 1976 Jul; 10(4):549-53. PubMed ID: 947918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro crevice corrosion behavior of implant materials.
    Sutow EJ; Jones DW; Milne EL
    J Dent Res; 1985 May; 64(5):842-7. PubMed ID: 3858307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell association of fretting corrosion products generated in a cell culture.
    Merritt K; Wenz L; Brown SA
    J Orthop Res; 1991 Mar; 9(2):289-96. PubMed ID: 1992077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Should the galvanic combination of titanium and stainless steel surgical implants be avoided?
    Høl PJ; Mølster A; Gjerdet NR
    Injury; 2008 Feb; 39(2):161-9. PubMed ID: 18054018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates.
    Krischak GD; Gebhard F; Mohr W; Krivan V; Ignatius A; Beck A; Wachter NJ; Reuter P; Arand M; Kinzl L; Claes LE
    Arch Orthop Trauma Surg; 2004 Mar; 124(2):104-13. PubMed ID: 14727127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences in the fretting corrosion of metal-metal and ceramic-metal modular junctions of total hip replacements.
    Hallab NJ; Messina C; Skipor A; Jacobs JJ
    J Orthop Res; 2004 Mar; 22(2):250-9. PubMed ID: 15013082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods.
    Chrzanowski W; Armitage DA; Knowles JC; Szade J; Korlacki W; Marciniak J
    J Biomater Appl; 2008 Jul; 23(1):51-71. PubMed ID: 18467745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo and in vitro studies of the stress-corrosion cracking behavior of surgical implant alloys.
    Bundy KJ; Marek M; Hochman RF
    J Biomed Mater Res; 1983 May; 17(3):467-87. PubMed ID: 6863350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of material and design features on the mechanical properties of transpedicular spinal fixation implants.
    Hahn M; Nassutt R; Delling G; Mahrenholtz O; Schneider E; Morlock M
    J Biomed Mater Res; 2002; 63(3):354-62. PubMed ID: 12115769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical studies on the influence of proteins on the corrosion of implant alloys.
    Williams RL; Brown SA; Merritt K
    Biomaterials; 1988 Mar; 9(2):181-6. PubMed ID: 3370285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws.
    Lukina E; Kollerov M; Meswania J; Khon A; Panin P; Blunn GW
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():601-610. PubMed ID: 28024627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.