BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15905880)

  • 1. Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco.
    Zapata JM; Guéra A; Esteban-Carrasco A; Martín M; Sabater B
    Cell Death Differ; 2005 Oct; 12(10):1277-84. PubMed ID: 15905880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies.
    Prins A; van Heerden PD; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2008; 59(7):1935-50. PubMed ID: 18503045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of the light-dependent induction of cell death in tobacco plants with delayed senescence.
    Wingler A; Brownhill E; Pourtau N
    J Exp Bot; 2005 Nov; 56(421):2897-905. PubMed ID: 16157651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves.
    Pageau K; Reisdorf-Cren M; Morot-Gaudry JF; Masclaux-Daubresse C
    J Exp Bot; 2006; 57(3):547-57. PubMed ID: 16377736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules.
    Amirsadeghi S; Robson CA; McDonald AE; Vanlerberghe GC
    Plant Cell Physiol; 2006 Nov; 47(11):1509-19. PubMed ID: 17012741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles.
    Terakura S; Kitakura S; Ishikawa M; Ueno Y; Fujita T; Machida C; Wabiko H; Machida Y
    Plant Cell Physiol; 2006 May; 47(5):664-72. PubMed ID: 16547081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase.
    Schildhauer J; Wiedemuth K; Humbeck K
    Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():76-84. PubMed ID: 18721313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tobacco plastid accD gene is essential and is required for leaf development.
    Kode V; Mudd EA; Iamtham S; Day A
    Plant J; 2005 Oct; 44(2):237-44. PubMed ID: 16212603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of a plastid evolutionary conserved gene affects PSII electron transport, life span and fitness of tobacco plants.
    Zapata JM; Gasulla F; Esteban-Carrasco A; Barreno E; Guéra A
    New Phytol; 2007; 174(2):357-366. PubMed ID: 17388898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf senescence and nutrient remobilisation in barley and wheat.
    Gregersen PL; Holm PB; Krupinska K
    Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():37-49. PubMed ID: 18721310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.
    Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG
    Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells.
    Wycliffe P; Sitbon F; Wernersson J; Ezcurra I; Ellerström M; Rask L
    Plant J; 2005 Oct; 44(1):1-15. PubMed ID: 16167891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span.
    Procházková D; Haisel D; Wilhelmová N
    Cell Biochem Funct; 2008; 26(5):582-90. PubMed ID: 18512255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco.
    Polanská L; Vicánková A; Nováková M; Malbeck J; Dobrev PI; Brzobohaty B; Vanková R; Machácková I
    J Exp Bot; 2007; 58(3):637-49. PubMed ID: 17175552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.
    Jiao BB; Wang JJ; Zhu XD; Zeng LJ; Li Q; He ZH
    Mol Plant; 2012 Jan; 5(1):205-17. PubMed ID: 21980143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple in vitro RNA editing assay for chloroplast transcripts using fluorescent dideoxynucleotides: distinct types of sequence elements required for editing of ndh transcripts.
    Sasaki T; Yukawa Y; Wakasugi T; Yamada K; Sugiura M
    Plant J; 2006 Sep; 47(5):802-10. PubMed ID: 16856984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of novel senescence-associated genes from barley (Hordeum vulgare) primary leaves.
    Ay N; Clauss K; Barth O; Humbeck K
    Plant Biol (Stuttg); 2008 Sep; 10 Suppl 1():121-35. PubMed ID: 18721317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids.
    Lennon AM; Prommeenate P; Nixon PJ
    Planta; 2003 Dec; 218(2):254-60. PubMed ID: 14504923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions.
    Lein W; Usadel B; Stitt M; Reindl A; Ehrhardt T; Sonnewald U; Börnke F
    Plant Biotechnol J; 2008 Apr; 6(3):246-63. PubMed ID: 18086234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SsTypA1, a chloroplast-specific TypA/BipA-type GTPase from the halophytic plant Suaeda salsa, plays a role in oxidative stress tolerance.
    Wang F; Zhong NQ; Gao P; Wang GL; Wang HY; Xia GX
    Plant Cell Environ; 2008 Jul; 31(7):982-94. PubMed ID: 18373622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.