These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15906144)

  • 1. A possible site of superoxide generation in the complex I segment of rat heart mitochondria.
    Ohnishi ST; Ohnishi T; Muranaka S; Fujita H; Kimura H; Uemura K; Yoshida K; Utsumi K
    J Bioenerg Biomembr; 2005 Feb; 37(1):1-15. PubMed ID: 15906144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site I
    Wong HS; Monternier PA; Brand MD
    Free Radic Biol Med; 2019 Nov; 143():545-559. PubMed ID: 31518685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
    Ohnishi ST; Shinzawa-Itoh K; Ohta K; Yoshikawa S; Ohnishi T
    Biochim Biophys Acta; 2010 Dec; 1797(12):1901-9. PubMed ID: 20513438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Lambert AJ; Brand MD
    J Biol Chem; 2004 Sep; 279(38):39414-20. PubMed ID: 15262965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of superoxide-producing sites in isolated brain mitochondria.
    Kudin AP; Bimpong-Buta NY; Vielhaber S; Elger CE; Kunz WS
    J Biol Chem; 2004 Feb; 279(6):4127-35. PubMed ID: 14625276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
    Plecitá-Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2009; 41(8-9):1697-707. PubMed ID: 19433311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site IQ in mitochondrial complex I generates S1QEL-sensitive superoxide/hydrogen peroxide in both the reverse and forward reactions.
    Gibbs ET; Lerner CA; Watson MA; Wong HS; Gerencser AA; Brand MD
    Biochem J; 2023 Mar; 480(5):363-384. PubMed ID: 36862427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of superoxide-radical by the NADH:ubiquinone oxidoreductase of heart mitochondria.
    Vinogradov AD; Grivennikova VG
    Biochemistry (Mosc); 2005 Feb; 70(2):120-7. PubMed ID: 15807648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Complex I superoxide production is attenuated by uncoupling.
    Dlasková A; Hlavatá L; Jezek J; Jezek P
    Int J Biochem Cell Biol; 2008; 40(10):2098-109. PubMed ID: 18358763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III.
    Dröse S; Hanley PJ; Brandt U
    Biochim Biophys Acta; 2009 Jun; 1790(6):558-65. PubMed ID: 19364480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Generation of superoxide radicals by the mitochondrial respiratory chain of isolated cardiomyocytes].
    Kashkarov KP; Vasil'eva EV; Ruuge EK
    Biokhimiia; 1994 Jun; 59(6):813-8. PubMed ID: 8075245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase.
    Raha S; McEachern GE; Myint AT; Robinson BH
    Free Radic Biol Med; 2000 Jul; 29(2):170-80. PubMed ID: 10980405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I).
    Treberg JR; Quinlan CL; Brand MD
    J Biol Chem; 2011 Aug; 286(31):27103-10. PubMed ID: 21659507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of cytochrome c: reactions with respiratory chain components and superoxide radical.
    Pepelina TY; Chertkova RV; Ostroverkhova TV; Dolgikh DA; Kirpichnikov MP; Grivennikova VG; Vinogradov AD
    Biochemistry (Mosc); 2009 Jun; 74(6):625-32. PubMed ID: 19645667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Generation of superoxide radicals by heart mitochondria: study by spin trapping under continuous oxygenation].
    Korkisha OV; Ruuge EK
    Biofizika; 2000; 45(4):695-9. PubMed ID: 11040979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane.
    Lambert AJ; Brand MD
    Biochem J; 2004 Sep; 382(Pt 2):511-7. PubMed ID: 15175007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer.
    Pryde KR; Hirst J
    J Biol Chem; 2011 May; 286(20):18056-65. PubMed ID: 21393237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.