These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 159071)
21. The recovery of the polymerizability of Lys-61-labelled actin by the addition of phalloidin. Fluorescence polarization and resonance-energy-transfer measurements. Miki M Eur J Biochem; 1987 Apr; 164(1):229-35. PubMed ID: 2951254 [TBL] [Abstract][Full Text] [Related]
22. Fluorescence energy transfer between probes on actin and probes on myosin. Dos Remedios CG; Cooke R Biochim Biophys Acta; 1984 Jul; 788(2):193-205. PubMed ID: 6743667 [TBL] [Abstract][Full Text] [Related]
23. Conformational distributions and proximity relationships in the rigor complex of actin and myosin subfragment-1. Nyitrai M; Hild G; Lukács A; Bódis E; Somogyi B J Biol Chem; 2000 Jan; 275(4):2404-9. PubMed ID: 10644692 [TBL] [Abstract][Full Text] [Related]
24. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer. Yengo CM; Chrin LR; Berger CL J Struct Biol; 2000 Sep; 131(3):187-96. PubMed ID: 11052891 [TBL] [Abstract][Full Text] [Related]
25. Fluorescence energy transfer between Cys-10 residues in F-actin filaments. Miki M; Barden JA; Hambly BD; dos Remedios CG Biochem Int; 1986 May; 12(5):725-31. PubMed ID: 3089224 [TBL] [Abstract][Full Text] [Related]
26. Transient kinetics of the interaction of actin with myosin subfragment-1 in the absence of nucleotide. Lin SH; Harzelrig JB; Cheung HC Biophys J; 1993 Oct; 65(4):1433-44. PubMed ID: 8274637 [TBL] [Abstract][Full Text] [Related]
27. Probe studies of the MgADP state of muscle cross-bridges: microscopic and wavelength-dependent fluorescence polarization from 1,5-IAEDANS-labeled myosin subfragment 1 decorating muscle fibers. Ajtai K; Burghardt TP Biochemistry; 1987 Jul; 26(14):4517-23. PubMed ID: 3663603 [TBL] [Abstract][Full Text] [Related]
28. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Vanderkooi JM; Ierokomas A; Nakamura H; Martonosi A Biochemistry; 1977 Apr; 16(7):1262-7. PubMed ID: 139160 [TBL] [Abstract][Full Text] [Related]
29. Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue. Miki M; Wahl P Biochim Biophys Acta; 1985 Apr; 828(2):188-95. PubMed ID: 3978110 [TBL] [Abstract][Full Text] [Related]
30. Interhead distances in myosin attached to F-actin estimated by fluorescence energy transfer spectroscopy. Ishiwata S; Miki M; Shin I; Funatsu T; Yasuda K; dos Remedios CG Biophys J; 1997 Aug; 73(2):895-904. PubMed ID: 9251806 [TBL] [Abstract][Full Text] [Related]
31. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity. Tiago T; Aureliano M; Gutiérrez-Merino C Biochemistry; 2004 May; 43(18):5551-61. PubMed ID: 15122921 [TBL] [Abstract][Full Text] [Related]
32. Interaction of myosin subfragment-1 with actin. III. Effect of cleavage of the subfragment-1 heavy chain on its interaction with actin. Yamamoto K; Sekine T J Biochem; 1979 Dec; 86(6):1869-81. PubMed ID: 160913 [TBL] [Abstract][Full Text] [Related]
33. Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin. Chantler PD; Tao T J Mol Biol; 1986 Nov; 192(1):87-99. PubMed ID: 3820308 [TBL] [Abstract][Full Text] [Related]
34. Interaction between myosin and F-actin. Correlation with actin-binding sites on subfragment-1. Katoh T; Morita F J Biochem; 1984 Oct; 96(4):1223-30. PubMed ID: 6520121 [TBL] [Abstract][Full Text] [Related]
35. Thiol-specific cross-linkers of variable length reveal a similar separation of SH1 and SH2 in myosin subfragment 1 in the presence and absence of MgADP. Kliche W; Pfannstiel J; Tiepold M; Stoeva S; Faulstich H Biochemistry; 1999 Aug; 38(32):10307-17. PubMed ID: 10441124 [TBL] [Abstract][Full Text] [Related]
36. Conformational transitions in the calcium adenosinetriphosphatase studied by time-resolved fluorescence resonance energy transfer. Birmachu W; Nisswandt FL; Thomas DD Biochemistry; 1989 May; 28(9):3940-7. PubMed ID: 2526653 [TBL] [Abstract][Full Text] [Related]
37. Effect of nucleotides and actin on the orientation of the light chain-binding domain in myosin subfragment 1. Smyczynski C; Kasprzak AA Biochemistry; 1997 Oct; 36(43):13201-7. PubMed ID: 9341208 [TBL] [Abstract][Full Text] [Related]
38. The MgADP-induced decrease of the SH1-SH2 fluorescence resonance energy transfer distance of myosin subfragment 1 occurs in two kinetic steps. Garland F; Gonsoulin F; Cheung HC J Biol Chem; 1988 Aug; 263(24):11621-3. PubMed ID: 3403549 [TBL] [Abstract][Full Text] [Related]
39. The effect of the Asp175Asn and Glu180Gly TPM1 mutations on actin-myosin interaction during the ATPase cycle. Rysev NA; Karpicheva OE; Redwood CS; Borovikov YS Biochim Biophys Acta; 2012 Feb; 1824(2):366-73. PubMed ID: 22155441 [TBL] [Abstract][Full Text] [Related]
40. Resonance energy transfer evidence for two attached states of the actomyosin complex. Bhandari DG; Trayer HR; Trayer IP FEBS Lett; 1985 Jul; 187(1):160-6. PubMed ID: 3839461 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]