BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15907219)

  • 1. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants.
    Choi KH; Schweizer HP
    BMC Microbiol; 2005 May; 5():30. PubMed ID: 15907219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid seamless method for gene knockout in Pseudomonas aeruginosa.
    Huang W; Wilks A
    BMC Microbiol; 2017 Sep; 17(1):199. PubMed ID: 28927382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria.
    Ortiz-Martín I; Macho AP; Lambersten L; Ramos C; Beuzón CR
    J Microbiol Methods; 2006 Dec; 67(3):395-407. PubMed ID: 16750581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants.
    Hoang TT; Karkhoff-Schweizer RR; Kutchma AJ; Schweizer HP
    Gene; 1998 May; 212(1):77-86. PubMed ID: 9661666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange.
    Hmelo LR; Borlee BR; Almblad H; Love ME; Randall TE; Tseng BS; Lin C; Irie Y; Storek KM; Yang JJ; Siehnel RJ; Howell PL; Singh PK; Tolker-Nielsen T; Parsek MR; Schweizer HP; Harrison JJ
    Nat Protoc; 2015 Nov; 10(11):1820-41. PubMed ID: 26492139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Frequency Targeted Mutagenesis in
    Gomaa AE; Deng Z; Yang Z; Shang L; Zhan Y; Lu W; Lin M; Yan Y
    J Microbiol Biotechnol; 2017 Feb; 27(2):335-341. PubMed ID: 27817190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tools for Rapid Genetic Engineering of Vibrio fischeri.
    Visick KL; Hodge-Hanson KM; Tischler AH; Bennett AK; Mastrodomenico V
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29776924
    [No Abstract]   [Full Text] [Related]  

  • 8. Combined sacB-based negative selection and cre-lox antibiotic marker recycling for efficient gene deletion in pseudomonas aeruginosa.
    Quénée L; Lamotte D; Polack B
    Biotechniques; 2005 Jan; 38(1):63-7. PubMed ID: 15679087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an inducible system to engineer unmarked conditional mutants of essential genes of Pseudomonas aeruginosa.
    Morita Y; Narita S; Tomida J; Tokuda H; Kawamura Y
    J Microbiol Methods; 2010 Sep; 82(3):205-13. PubMed ID: 20538017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains.
    Hoang TT; Kutchma AJ; Becher A; Schweizer HP
    Plasmid; 2000 Jan; 43(1):59-72. PubMed ID: 10610820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new simple method for introducing an unmarked mutation into a large gene of non-competent Gram-negative bacteria by FLP/FRT recombination.
    Ishikawa M; Hori K
    BMC Microbiol; 2013 Apr; 13():86. PubMed ID: 23594401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker.
    Schweizer HP
    Mol Microbiol; 1992 May; 6(9):1195-204. PubMed ID: 1588818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative vectors for gene deletion and replacement.
    Sektas M; Gregorowicz M; Kucharska M; Jodelko E
    Pol J Microbiol; 2013; 62(1):77-80. PubMed ID: 23829081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of in-frame aroA deletion mutants of Mannheimia haemolytica, Pasteurella multocida, and Haemophilus somnus by using a new temperature-sensitive plasmid.
    Tatum FM; Briggs RE
    Appl Environ Microbiol; 2005 Nov; 71(11):7196-202. PubMed ID: 16269759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Construction of luxAB-labelled Pseudomonas aeruginosa].
    Li W; Liu H; Huang Z
    Wei Sheng Yan Jiu; 2011 Jan; 40(1):57-60. PubMed ID: 21434314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a genetic tool for activating chromosomal expression of cryptic or tightly regulated loci in Pseudomonas aeruginosa.
    Spagnolo J; Bigot S; Denis Y; Bordi C; de Bentzmann S
    Plasmid; 2012 May; 67(3):245-51. PubMed ID: 22212534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa.
    Lesic B; Rahme LG
    BMC Mol Biol; 2008 Feb; 9():20. PubMed ID: 18248677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of porins in the antibiotic susceptibility of Pseudomonas aeruginosa: construction of mutants with deletions in the multiple porin genes.
    Yoneyama H; Yamano Y; Nakae T
    Biochem Biophys Res Commun; 1995 Aug; 213(1):88-95. PubMed ID: 7639767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement.
    Parish T; Stoker NG
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1969-1975. PubMed ID: 10931901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa.
    Choi KH; Schweizer HP
    Nat Protoc; 2006; 1(1):153-61. PubMed ID: 17406227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.