These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 15907330)

  • 41. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The non-linear mechanical properties of soft engineered biological tissues determined by finite spherical indentation.
    Cox MA; Gawlitta D; Driessen NJ; Oomens CW; Baaijens FP
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):585-92. PubMed ID: 19230150
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feasibility of the use of a novel soft tissue stiffness meter.
    Arokoski JP; Surakka J; Ojala T; Kolari P; Jurvelin JS
    Physiol Meas; 2005 Jun; 26(3):215-28. PubMed ID: 15798297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A three-dimensional inverse finite element analysis of the heel pad.
    Chokhandre S; Halloran JP; van den Bogert AJ; Erdemir A
    J Biomech Eng; 2012 Mar; 134(3):031002. PubMed ID: 22482682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the effect of a compliant layer on indentation of an elastic material.
    Jia Y; Xuan FZ; Yang F
    J Mech Behav Biomed Mater; 2013 Sep; 25():33-40. PubMed ID: 23726924
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Real-time patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for prosthetic fitting.
    Portnoy S; Yarnitzky G; Yizhar Z; Kristal A; Oppenheim U; Siev-Ner I; Gefen A
    Ann Biomed Eng; 2007 Jan; 35(1):120-35. PubMed ID: 17120139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduction of plantar heel pressures: Insole design using finite element analysis.
    Goske S; Erdemir A; Petre M; Budhabhatti S; Cavanagh PR
    J Biomech; 2006; 39(13):2363-70. PubMed ID: 16197952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling.
    Mo F; Li J; Yang Z; Zhou S; Behr M
    Ann Biomed Eng; 2019 Dec; 47(12):2356-2371. PubMed ID: 31264043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subject-specific material properties of the heel pad: An inverse finite element analysis.
    Isvilanonda V; Li EY; Williams ED; Cavanagh PR; Haynor DR; Chu B; Ledoux WR
    J Biomech; 2024 Mar; 165():112016. PubMed ID: 38422775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A biphasic model for micro-indentation of a hydrogel-based contact lens.
    Chen X; Dunn AC; Sawyer WG; Sarntinoranont M
    J Biomech Eng; 2007 Apr; 129(2):156-63. PubMed ID: 17408320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental and numerical validation for the novel configuration of an arthroscopic indentation instrument.
    Korhonen RK; Saarakkala S; Töyräs J; Laasanen MS; Kiviranta I; Jurvelin JS
    Phys Med Biol; 2003 Jun; 48(11):1565-76. PubMed ID: 12817938
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing behind armor blunt trauma in accordance with the National Institute of Justice Standard for Personal Body Armor Protection using finite element modeling.
    Roberts JC; Ward EE; Merkle AC; O'Connor JV
    J Trauma; 2007 May; 62(5):1127-33. PubMed ID: 17495712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo mechanical behavior of intra-abdominal organs.
    Tay BK; Kim J; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2129-38. PubMed ID: 17073317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measurement of lung hyperelastic properties using inverse finite element approach.
    Sadeghi Naini A; Patel RV; Samani A
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2852-9. PubMed ID: 21724500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.