BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15907508)

  • 1. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity.
    Turner BL; Haygarth PM
    Sci Total Environ; 2005 May; 344(1-3):27-36. PubMed ID: 15907508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Exogenous Phytase Addition on Soil Phosphatase Activities: a Fluorescence Spectroscopy Study.
    Yang XZ; Chen ZH; Zhang YL; Chen LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 May; 35(5):1294-9. PubMed ID: 26415447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phosphatase activities in rice-planting meadow brown soil and their responses to fertilization].
    Shen J; Chen Z; Chen L
    Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):583-5. PubMed ID: 15943382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition.
    Turner BL; Baxter R; Whitton BA
    Environ Pollut; 2002; 120(2):313-7. PubMed ID: 12395844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils.
    Garg S; Bahl GS
    Bioresour Technol; 2008 Sep; 99(13):5773-7. PubMed ID: 18325765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Land use as an explanatory factor for potential phosphorus loss risk, assessed by P indices and their governing parameters.
    Zhou B; Vogt RD; Lu X; Yang X; Lü C; Mohr CW; Zhu L
    Environ Sci Process Impacts; 2015 Aug; 17(8):1443-54. PubMed ID: 26151813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution.
    Gianfreda L; Antonietta Rao M; Piotrowska A; Palumbo G; Colombo C
    Sci Total Environ; 2005 Apr; 341(1-3):265-79. PubMed ID: 15833257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of organic and conventional management of sugar cane crop on soil physicochemical characteristics and phosphomonoesterase activity.
    Purcena LL; Di Medeiros MC; Leandro WM; Fernandes KF
    J Agric Food Chem; 2014 Feb; 62(7):1456-63. PubMed ID: 24475929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption dynamics of organic and inorganic phosphorus compounds in soil.
    Berg AS; Joern BC
    J Environ Qual; 2006; 35(5):1855-62. PubMed ID: 16899757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Phosphorus characteristics in leachate from soils irrigated with livestock wastewater].
    He LS; Liu HL; Zhu YB; Xi BD
    Huan Jing Ke Xue; 2005 Sep; 26(5):200-4. PubMed ID: 16366499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Distribution Characteristics of Soil Phosphorus Forms and Phosphatase Activity at Different Altitudes in the Soil of Water-Level-Fluctuation Zone in Pengxi River, Three Gorges Reservoir].
    Gao YL; Fang F; Tang ZC; Zhang R; Jiang YX; Guo JS
    Huan Jing Ke Xue; 2022 Oct; 43(10):4630-4638. PubMed ID: 36224148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorus cycling in wetland soils: the importance of phosphate diesters.
    Turner BL; Newman S
    J Environ Qual; 2005; 34(5):1921-9. PubMed ID: 16151243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops.
    Saha S; Mina BL; Gopinath KA; Kundu S; Gupta HS
    Bioresour Technol; 2008 Apr; 99(6):1750-7. PubMed ID: 17507214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of enzymes in organic carbon-amended soils treated with varying levels of salts.
    Shehata SM; El-Shinnawi MM; El-Shimi SA
    Zentralbl Mikrobiol; 1982; 137(2):76-85. PubMed ID: 6285641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations on the use of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi.
    Tibbett M
    Microbiol Res; 2002; 157(3):221-31. PubMed ID: 12398293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root-surface phosphatase activity in shrublands across a European gradient: effects of warming.
    Estiarte M; Peuuelas J; Sardans J; Emmett BA; Sowerby A; Beier C; Schmidt IK; Tietema A; Van Meeteren MJ; Kovacs-Lang E; Mathe P; De Angelis P; De Dato G
    J Environ Biol; 2008 Jan; 29(1):25-9. PubMed ID: 18831327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactivation of bis[p-nitrophenyl]phosphate by phosphoesterases of the earthworm, Lumbricus terrestris.
    Park SC; Smith TJ; Bisesi MS
    Drug Chem Toxicol; 1993; 16(1):111-6. PubMed ID: 8382150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic phosphorus fractions in organically amended paddy soils in continuously and intermittently flooded conditions.
    Yang C; Yang L; Jianhua L
    J Environ Qual; 2006; 35(4):1142-50. PubMed ID: 16738400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.
    Turner BL
    Appl Environ Microbiol; 2010 Oct; 76(19):6485-93. PubMed ID: 20709838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase.
    Keppetipola N; Shuman S
    J Biol Chem; 2006 Jul; 281(28):19251-9. PubMed ID: 16675457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.