These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15907508)

  • 21. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines.
    Oliver DP; Kookana RS; Quintana B
    J Agric Food Chem; 2005 Aug; 53(16):6420-5. PubMed ID: 16076128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna.
    Rodrigues M; Pavinato PS; Withers PJ; Teles AP; Herrera WF
    Sci Total Environ; 2016 Jan; 542(Pt B):1050-61. PubMed ID: 26351200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation kinetics of forchlorfenuron in typical grapevine soils of India and its influence on specific soil enzyme activities.
    Banerjee K; Dasgupta S; Oulkar DP; Patil SH; Adsule PG
    J Environ Sci Health B; 2008 May; 43(4):341-9. PubMed ID: 18437622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of carbon- and phosphorus-content on the phosphomonoesterase activity in soil.
    Máthé P; Füleky G; Anton A
    Acta Biol Hung; 1994; 45(1):81-5. PubMed ID: 7740904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of high metal concentrations in soil-compost mixtures on soil enzymes.
    Warman PR; Munroe MD
    J Environ Sci Health B; 2010 Oct; 45(7):633-8. PubMed ID: 20803367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure.
    Johnson AH; Frizano J; Vann DR
    Oecologia; 2003 May; 135(4):487-99. PubMed ID: 12695899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the structural stability of pasture and cultivated soils.
    Barral MT; Buján E; Devesa R; Iglesias ML; Velasco-Molina M
    Sci Total Environ; 2007 May; 378(1-2):174-8. PubMed ID: 17289122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of soil physicochemical and biological properties on the degradation and adsorption of the nematicide fosthiazate.
    Pantelelis I; Karpouzas DG; Menkissoglu-Spiroudi U; Tsiropoulos N
    J Agric Food Chem; 2006 Sep; 54(18):6783-9. PubMed ID: 16939340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis.
    Darch T; Blackwell MS; Chadwick D; Haygarth PM; Hawkins JM; Turner BL
    Geoderma; 2016 Dec; 284():93-102. PubMed ID: 27990026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of environmental factors and Mn, Zn, Cu trace elements on the soil phosphomonoesterase and amidase activity. Application of DISITOBI model.
    Anton A; Máthé P; Radimszky L; Füleky G; Biczók G
    Acta Biol Hung; 1994; 45(1):39-50. PubMed ID: 7740899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental factors determining the trace-level sorption of silver and thallium to soils.
    Jacobson AR; McBride MB; Baveye P; Steenhuis TS
    Sci Total Environ; 2005 Jun; 345(1-3):191-205. PubMed ID: 15919539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of phosphodiesterase activity in the presence of phosphomonoesterase using bis-p-nitrophenyl phosphate.
    Dolapchiev LB; Vassileva RA; Dimitrov D
    Mol Biol Rep; 1979 Aug; 5(3):185-8. PubMed ID: 226867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patterns of activities of root phosphomonoesterase and phosphodiesterase in wetland plants as a function of macrophyte species and ambient phosphorus regime.
    Rejmánková E; Sirová D; Carlson E
    New Phytol; 2011 Jun; 190(4):968-976. PubMed ID: 21714183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil profile distribution of phosphorus and other nutrients following wetland conversion to beef cattle pasture.
    Sigua GC; Kang WJ; Coleman SW
    J Environ Qual; 2006; 35(6):2374-82. PubMed ID: 17071908
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming.
    Droulia FE; Kati V; Giannopolitis CN
    J Environ Sci Health B; 2011; 46(5):404-10. PubMed ID: 21614714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mercury loss from soils following conversion from forest to pasture in Rondônia, Western Amazon, Brazil.
    Almeida MD; Lacerda LD; Bastos WR; Herrmann JC
    Environ Pollut; 2005 Sep; 137(2):179-86. PubMed ID: 15885862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols.
    Louche J; Ali MA; Cloutier-Hurteau B; Sauvage FX; Quiquampoix H; Plassard C
    FEMS Microbiol Ecol; 2010 Aug; 73(2):323-35. PubMed ID: 20533944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation and sorption of fluometuron and metabolites in conservation tillage soils.
    Locke MA; Zablotowicz RM; Steinriede RW; Kingery WL
    J Agric Food Chem; 2007 Feb; 55(3):844-51. PubMed ID: 17263484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.