BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1590773)

  • 1. Identification and partial purification of the erythrocyte L-lactate transporter.
    Poole RC; Halestrap AP
    Biochem J; 1992 May; 283 ( Pt 3)(Pt 3):855-62. PubMed ID: 1590773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible and irreversible inhibition, by stilbenedisulphonates, of lactate transport into rat erythrocytes. Identification of some new high-affinity inhibitors.
    Poole RC; Halestrap AP
    Biochem J; 1991 Apr; 275 ( Pt 2)(Pt 2):307-12. PubMed ID: 2025218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-mediated chloride-phosphate and lactate-lactate exchange in cytoskeleton-free vesicles budded from rabbit erythrocytes.
    Donovan JA
    Biochim Biophys Acta; 1985 Jun; 816(1):68-76. PubMed ID: 4005240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition and labelling of the erythrocyte lactate transporter by stilbene disulphonates.
    Poole RC; Halestrap AP
    Biochem Soc Trans; 1990 Dec; 18(6):1245-6. PubMed ID: 2088893
    [No Abstract]   [Full Text] [Related]  

  • 5. Transmembrane helix-helix interactions and accessibility of H2DIDS on labelled band 3, the erythrocyte anion exchange protein.
    Landolt-Marticorena C; Casey JR; Reithmeier RA
    Mol Membr Biol; 1995; 12(2):173-82. PubMed ID: 7795708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-hydroxysulfosuccinimido active esters and the L-(+)-lactate transport protein in rabbit erythrocytes.
    Donovan JA; Jennings ML
    Biochemistry; 1986 Apr; 25(7):1538-45. PubMed ID: 3707891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeling of human erythrocyte band 3 with maltosylisothiocyanate. Interaction with the anion transporter.
    May JM
    J Biol Chem; 1987 Mar; 262(7):3140-5. PubMed ID: 3818636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid.
    Donovan JA; Jennings ML
    Biochemistry; 1985 Jan; 24(3):561-4. PubMed ID: 2986679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-terminal protein sequence analysis of the rabbit erythrocyte lactate transporter suggests identity with the cloned monocarboxylate transport protein MCT1.
    Poole RC; Halestrap AP
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):755-9. PubMed ID: 7980443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily.
    Poole RC; Halestrap AP
    J Biol Chem; 1997 Jun; 272(23):14624-8. PubMed ID: 9169423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of staphylococcal alpha-hemolysin upon anion transport in the rabbit erythrocyte.
    Austin JW; Fackrell HB
    Biochim Biophys Acta; 1984 Jul; 774(2):247-53. PubMed ID: 6743657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate.
    Ritzhaupt A; Wood IS; Ellis A; Hosie KB; Shirazi-Beechey SP
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):719-32. PubMed ID: 9824713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the eosinyl-5-maleimide reaction site on the human erythrocyte anion-exchange protein: overlap with the reaction sites of other chemical probes.
    Cobb CE; Beth AH
    Biochemistry; 1990 Sep; 29(36):8283-90. PubMed ID: 1701324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the lactate carrier from rat skeletal-muscle sarcolemma.
    Wibrand F; Juel C
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):533-7. PubMed ID: 8172615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a membrane protein from T84 cells using antibodies made against a DIDS-binding peptide.
    Sorscher EJ; Fuller CM; Bridges RJ; Tousson A; Marchase RB; Brinkley BR; Frizzell RA; Benos DJ
    Am J Physiol; 1992 Jan; 262(1 Pt 1):C136-47. PubMed ID: 1310206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pepsin cleavage of band 3 produces its membrane-crossing domains.
    Ramjeesingh M; Gaarn A; Rothstein A
    Biochim Biophys Acta; 1984 Jan; 769(2):381-9. PubMed ID: 6421317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate-proton co-transport and its contribution to interstitial acidification during hypoxia in isolated rat spinal roots.
    Schneider U; Poole RC; Halestrap AP; Grafe P
    Neuroscience; 1993 Apr; 53(4):1153-62. PubMed ID: 8389429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of stilbenedisulfonate binding on the state of association of the membrane-spanning domain of band 3 from bovine erythrocyte membrane.
    Tomida M; Kondo Y; Moriyama R; Machida H; Makino S
    Biochim Biophys Acta; 1988 Sep; 943(3):493-500. PubMed ID: 3415991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.