These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15907835)

  • 1. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein.
    Matsuura T; Shimono Y; Kawai K; Murakami H; Urano T; Niwa Y; Goto H; Takahashi M
    Exp Cell Res; 2005 Aug; 308(1):65-77. PubMed ID: 15907835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUMOylation of RORalpha potentiates transcriptional activation function.
    Hwang EJ; Lee JM; Jeong J; Park JH; Yang Y; Lim JS; Kim JH; Baek SH; Kim KI
    Biochem Biophys Res Commun; 2009 Jan; 378(3):513-7. PubMed ID: 19041634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIAS/SUMO: new partners in transcriptional regulation.
    Schmidt D; Müller S
    Cell Mol Life Sci; 2003 Dec; 60(12):2561-74. PubMed ID: 14685683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role for O-glycosylation of RFP in the interaction with enhancer of polycomb.
    Tezel G; Shimono Y; Murakumo Y; Kawai K; Fukuda T; Iwahashi N; Takahashi M
    Biochem Biophys Res Commun; 2002 Jan; 290(1):409-14. PubMed ID: 11779184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional repression activity of KyoT2 on the Notch/RBP-J pathway is regulated by PIAS1-catalyzed SUMOylation.
    Wang J; Qin H; Liang J; Zhu Y; Liang L; Zheng M; Han H
    J Mol Biol; 2007 Jun; 370(1):27-38. PubMed ID: 17509614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RFP represses transcriptional activation by bHLH transcription factors.
    Bloor AJ; Kotsopoulou E; Hayward P; Champion BR; Green AR
    Oncogene; 2005 Oct; 24(45):6729-36. PubMed ID: 16007160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over-expression of SUMO-1 induces the up-regulation of heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG) in hepG2 cells.
    Ma KW; Au SW; Waye MM
    Cell Biochem Funct; 2009 Jun; 27(4):228-37. PubMed ID: 19384898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interaction of AIRE with PIAS1 in transcriptional regulation.
    Ilmarinen T; Kangas H; Kytömaa T; Eskelin P; Saharinen J; Seeler JS; Tanhuanpää K; Chan FY; Slattery RM; Alakurtti K; Palvimo JJ; Ulmanen I
    Mol Immunol; 2008 Apr; 45(7):1847-62. PubMed ID: 18083234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression of E1AF transcriptional activity by sumoylation and PIASy.
    Nishida T; Terashima M; Fukami K; Yamada Y
    Biochem Biophys Res Commun; 2007 Aug; 360(1):226-32. PubMed ID: 17585876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life.
    Wong KA; Kim R; Christofk H; Gao J; Lawson G; Wu H
    Mol Cell Biol; 2004 Jun; 24(12):5577-86. PubMed ID: 15169916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RET finger protein enhances MBD2- and MBD4-dependent transcriptional repression.
    Fukushige S; Kondo E; Gu Z; Suzuki H; Horii A
    Biochem Biophys Res Commun; 2006 Dec; 351(1):85-92. PubMed ID: 17049487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SUMO modification modulates the transrepression activity of PLZF.
    Chao TT; Chang CC; Shih HM
    Biochem Biophys Res Commun; 2007 Jun; 358(2):475-82. PubMed ID: 17498654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIAS proteins as repressors of Oct4 function.
    Tolkunova E; Malashicheva A; Parfenov VN; Sustmann C; Grosschedl R; Tomilin A
    J Mol Biol; 2007 Dec; 374(5):1200-12. PubMed ID: 17991485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells.
    Woo CH; Shishido T; McClain C; Lim JH; Li JD; Yang J; Yan C; Abe J
    Circ Res; 2008 Mar; 102(5):538-45. PubMed ID: 18218985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription.
    Nishida T; Yasuda H
    J Biol Chem; 2002 Nov; 277(44):41311-7. PubMed ID: 12177000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIAS1 interacts with and represses SOX9 transactivation activity.
    Oh HJ; Kido T; Lau YF
    Mol Reprod Dev; 2007 Nov; 74(11):1446-55. PubMed ID: 17440973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of STAT3 activity by Duplin, which is a negative regulator of the Wnt signal.
    Yamashina K; Yamamoto H; Chayama K; Nakajima K; Kikuchi A
    J Biochem; 2006 Feb; 139(2):305-14. PubMed ID: 16452319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation.
    Kotaja N; Aittomäki S; Silvennoinen O; Palvimo JJ; Jänne OA
    Mol Endocrinol; 2000 Dec; 14(12):1986-2000. PubMed ID: 11117529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling.
    Stehmeier P; Muller S
    Mol Cell; 2009 Feb; 33(3):400-9. PubMed ID: 19217413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-dependent activation of Tcf-4.
    Ihara M; Yamamoto H; Kikuchi A
    Mol Cell Biol; 2005 May; 25(9):3506-18. PubMed ID: 15831457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.