These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 15908576)
1. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Schroeder EK; Basso LA; Santos DS; de Souza ON Biophys J; 2005 Aug; 89(2):876-84. PubMed ID: 15908576 [TBL] [Abstract][Full Text] [Related]
2. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717 [TBL] [Abstract][Full Text] [Related]
3. Molecular Dynamics Assisted Mechanistic Study of Isoniazid-Resistance against Mycobacterium tuberculosis InhA. Kumar V; Sobhia ME PLoS One; 2015; 10(12):e0144635. PubMed ID: 26658674 [TBL] [Abstract][Full Text] [Related]
4. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773 [TBL] [Abstract][Full Text] [Related]
5. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis. Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. Chollet A; Mourey L; Lherbet C; Delbot A; Julien S; Baltas M; Bernadou J; Pratviel G; Maveyraud L; Bernardes-Génisson V J Struct Biol; 2015 Jun; 190(3):328-37. PubMed ID: 25891098 [TBL] [Abstract][Full Text] [Related]
8. Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. Stigliani JL; Arnaud P; Delaine T; Bernardes-Génisson V; Meunier B; Bernadou J J Mol Graph Model; 2008 Nov; 27(4):536-45. PubMed ID: 18955002 [TBL] [Abstract][Full Text] [Related]
9. Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study. da Costa AL; Pauli I; Dorn M; Schroeder EK; Zhan CG; de Souza ON J Mol Model; 2012 May; 18(5):1779-90. PubMed ID: 21833828 [TBL] [Abstract][Full Text] [Related]
10. Slow-onset inhibition of 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis by an inorganic complex. Oliveira JS; de Sousa EH; de Souza ON; Moreira IS; Santos DS; Basso LA Curr Pharm Des; 2006; 12(19):2409-24. PubMed ID: 16842188 [TBL] [Abstract][Full Text] [Related]
11. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Rozwarski DA; Grant GA; Barton DH; Jacobs WR; Sacchettini JC Science; 1998 Jan; 279(5347):98-102. PubMed ID: 9417034 [TBL] [Abstract][Full Text] [Related]
12. Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis. Parikh S; Moynihan DP; Xiao G; Tonge PJ Biochemistry; 1999 Oct; 38(41):13623-34. PubMed ID: 10521269 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate. Rozwarski DA; Vilchèze C; Sugantino M; Bittman R; Sacchettini JC J Biol Chem; 1999 May; 274(22):15582-9. PubMed ID: 10336454 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Parikh SL; Xiao G; Tonge PJ Biochemistry; 2000 Jul; 39(26):7645-50. PubMed ID: 10869170 [TBL] [Abstract][Full Text] [Related]
16. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Rawat R; Whitty A; Tonge PJ Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13881-6. PubMed ID: 14623976 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Quémard A; Sacchettini JC; Dessen A; Vilcheze C; Bittman R; Jacobs WR; Blanchard JS Biochemistry; 1995 Jul; 34(26):8235-41. PubMed ID: 7599116 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Dessen A; Quémard A; Blanchard JS; Jacobs WR; Sacchettini JC Science; 1995 Mar; 267(5204):1638-41. PubMed ID: 7886450 [TBL] [Abstract][Full Text] [Related]
19. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA). Khan AM; Shawon J; Halim MA J Mol Graph Model; 2017 Oct; 77():386-398. PubMed ID: 28957755 [TBL] [Abstract][Full Text] [Related]
20. Study of mechanism of interaction of truncated isoniazid-nicotinamide adenine dinucleotide adduct against multiple enzymes of Mycobacterium tuberculosis by a computational approach. Jena L; Deshmukh S; Waghmare P; Kumar S; Harinath BC Int J Mycobacteriol; 2015 Dec; 4(4):276-83. PubMed ID: 26964808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]