BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 15909653)

  • 1. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices.
    Lin F; Nguyen CM; Wang SJ; Saadi W; Gross SP; Jeon NL
    Ann Biomed Eng; 2005 Apr; 33(4):475-82. PubMed ID: 15909653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device.
    Li Jeon N; Baskaran H; Dertinger SK; Whitesides GM; Van de Water L; Toner M
    Nat Biotechnol; 2002 Aug; 20(8):826-30. PubMed ID: 12091913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-demand, competing gradient arrays for neutrophil chemotaxis.
    Cho H; Hamza B; Wong EA; Irimia D
    Lab Chip; 2014 Mar; 14(5):972-978. PubMed ID: 24430002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation to chemotactic factor gradients to neutrophil migration and orientation under agarose.
    Udén AM; Hafström I; Palmblad J
    J Leukoc Biol; 1986 Jan; 39(1):27-35. PubMed ID: 3001211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration.
    Lin F; Nguyen CM; Wang SJ; Saadi W; Gross SP; Jeon NL
    Biochem Biophys Res Commun; 2004 Jun; 319(2):576-81. PubMed ID: 15178445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukotriene B4-activated human endothelial cells promote transendothelial neutrophil migration.
    Nohgawa M; Sasada M; Maeda A; Asagoe K; Harakawa N; Takano K; Yamamoto K; Okuma M
    J Leukoc Biol; 1997 Aug; 62(2):203-9. PubMed ID: 9261334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant human interleukin-8 is a potent activator of canine neutrophil aggregation, migration, and leukotriene B4 biosynthesis.
    Thomsen MK; Larsen CG; Thomsen HK; Kirstein D; Skak-Nielsen T; Ahnfelt-Rønne I; Thestrup-Pedersen K
    J Invest Dermatol; 1991 Feb; 96(2):260-6. PubMed ID: 1846901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber.
    Saadi W; Rhee SW; Lin F; Vahidi B; Chung BG; Jeon NL
    Biomed Microdevices; 2007 Oct; 9(5):627-35. PubMed ID: 17530414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistep navigation and the combinatorial control of leukocyte chemotaxis.
    Foxman EF; Campbell JJ; Butcher EC
    J Cell Biol; 1997 Dec; 139(5):1349-60. PubMed ID: 9382879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating conflicting chemotactic signals. The role of memory in leukocyte navigation.
    Foxman EF; Kunkel EJ; Butcher EC
    J Cell Biol; 1999 Nov; 147(3):577-88. PubMed ID: 10545501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degree of neutrophil chemotaxis is dependent upon the chemoattractant and barrier.
    Casale TB; Abbas MK; Carolan EJ
    Am J Respir Cell Mol Biol; 1992 Jul; 7(1):112-7. PubMed ID: 1320901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-8 and leukotriene-B(4), but not formylmethionyl leucylphenylalanine, stimulate CD18-independent migration of neutrophils across human pulmonary endothelial cells in vitro.
    Mackarel AJ; Russell KJ; Brady CS; FitzGerald MX; O'Connor CM
    Am J Respir Cell Mol Biol; 2000 Aug; 23(2):154-61. PubMed ID: 10919980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrin regulates neutrophil migration in response to interleukin 8, leukotriene B4, tumor necrosis factor, and formyl-methionyl-leucyl-phenylalanine.
    Loike JD; el Khoury J; Cao L; Richards CP; Rascoff H; Mandeville JT; Maxfield FR; Silverstein SC
    J Exp Med; 1995 May; 181(5):1763-72. PubMed ID: 7722453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients.
    Irimia D; Liu SY; Tharp WG; Samadani A; Toner M; Poznansky MC
    Lab Chip; 2006 Feb; 6(2):191-8. PubMed ID: 16450027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative differences and combined effects of interleukin-8, leukotriene B4, and platelet-activating factor on neutrophil chemotaxis of the newborn.
    Tan ND; Davidson D
    Pediatr Res; 1995 Jul; 38(1):11-6. PubMed ID: 7478787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of neutrophils from blood in human and laboratory animals and comparison of the chemotaxis.
    Sugawara T; Miyamoto M; Takayama S; Kato M
    J Pharmacol Toxicol Methods; 1995 Apr; 33(2):91-100. PubMed ID: 7766921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemotaxis of human neutrophils and eosinophils towards leukotriene B4 and its 20-w-oxidation products in vitro.
    Czarnetzki BM; Rosenbach T
    Prostaglandins; 1986 May; 31(5):851-8. PubMed ID: 3014612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil transepithelial migration is dependent upon epithelial characteristics.
    Carolan EJ; Casale TB
    Am J Respir Cell Mol Biol; 1996 Aug; 15(2):224-31. PubMed ID: 8703478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CXCL8 attenuates chemoattractant-induced equine neutrophil migration.
    Brooks AC; Rickards KJ; Cunningham FM
    Vet Immunol Immunopathol; 2011 Feb; 139(2-4):141-7. PubMed ID: 21040981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of leukotriene B4-induced neutrophil migration through different cellular barriers.
    Casale TB; Abbas MK
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C639-47. PubMed ID: 2159214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.