These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 15910016)

  • 1. A molecular dynamics simulation of the electrical conductivity behaviors of highly concentrated liquid ammoniates NaIalphaNH(3): comparison with experimental measurements.
    Picaud S; Hoang PN; Herlem G
    J Chem Phys; 2005 May; 122(17):171102. PubMed ID: 15910016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients.
    Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B
    J Chem Phys; 2009 Jan; 130(1):014703. PubMed ID: 19140627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical conductivity of mixed electrolytes: Modeling within the mean spherical approximation.
    Roger GM; Durand-Vidal S; Bernard O; Turq P
    J Phys Chem B; 2009 Jun; 113(25):8670-4. PubMed ID: 19485401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of neutral ion aggregate formation on the electrical conductivity of an ionic liquid and its mixtures with chloroform.
    Köddermann T; Klembt S; Klasen D; Paschek D; Kragl U; Ludwig R
    Chemphyschem; 2012 May; 13(7):1748-52. PubMed ID: 22411741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature.
    Rey-Castro C; Vega LF
    J Phys Chem B; 2006 Jul; 110(29):14426-35. PubMed ID: 16854152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductivity of methane hydrate from experiment and molecular simulation.
    Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP
    J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective excitations in an ionic liquid.
    Urahata SM; Ribeiro MC
    J Chem Phys; 2006 Feb; 124(7):74513. PubMed ID: 16497063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation of the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide.
    Siqueira LJ; Ribeiro MC
    J Phys Chem B; 2007 Oct; 111(40):11776-85. PubMed ID: 17877389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphologies of three-phase emulsions of the ternary nonionic amphiphile/oil/water systems and their determination by electrical method.
    Lee JM; Shin HJ; Lim KH
    J Colloid Interface Sci; 2003 Jan; 257(2):344-56. PubMed ID: 16256490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theory of electrical conductivity of molten salt. II.
    Koishi T; Tamaki S
    J Chem Phys; 2004 Jul; 121(1):333-40. PubMed ID: 15260552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO(4). II. Dynamical properties.
    Siqueira LJ; Ribeiro MC
    J Chem Phys; 2006 Dec; 125(21):214903. PubMed ID: 17166045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jul; 113(30):10261-70. PubMed ID: 19580303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics.
    Shiga M; Shinoda W
    J Chem Phys; 2005 Oct; 123(13):134502. PubMed ID: 16223309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial-decomposition analysis of electrical conductivity in concentrated electrolyte solution.
    Tu KM; Ishizuka R; Matubayasi N
    J Chem Phys; 2014 Jul; 141(4):044126. PubMed ID: 25084900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. II. Dynamical properties.
    Costa LT; Ribeiro MC
    J Chem Phys; 2007 Oct; 127(16):164901. PubMed ID: 17979388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties.
    Costa LT; Ribeiro MC
    J Chem Phys; 2006 May; 124(18):184902. PubMed ID: 16709134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of the transport and relaxation properties of methane. II. Thermal conductivity, thermomagnetic effects, volume viscosity, and nuclear-spin relaxation.
    Hellmann R; Bich E; Vogel E; Dickinson AS; Vesovic V
    J Chem Phys; 2009 Mar; 130(12):124309. PubMed ID: 19334832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics.
    Zhang M; Lussetti E; de Souza LE; Müller-Plathe F
    J Phys Chem B; 2005 Aug; 109(31):15060-7. PubMed ID: 16852906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of the thermal conductivity of methane hydrate.
    Jiang H; Myshakin EM; Jordan KD; Warzinski RP
    J Phys Chem B; 2008 Aug; 112(33):10207-16. PubMed ID: 18652505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.