BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15910742)

  • 1. Evidence that Na+-pumping occurs through the D-channel in Vitreoscilla cytochrome bo.
    Kim SK; Stark BC; Webster DA
    Biochem Biophys Res Commun; 2005 Jul; 332(2):332-8. PubMed ID: 15910742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles.
    Park C; Moon JY; Cokic P; Webster DA
    Biochemistry; 1996 Sep; 35(36):11895-900. PubMed ID: 8794772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Asp544 in subunit I for Na(+) pumping by Vitreoscilla cytochrome bo.
    Chung YT; Stark BC; Webster DA
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1209-14. PubMed ID: 16919598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification, crystallization and preliminary X-ray analysis of the soluble domain of the Na+-pumping cytochrome bo quinol oxidase from Vitreoscilla.
    Kim KJ; Kim Y; Park KW; Webster DA; Howard AJ
    Acta Crystallogr D Biol Crystallogr; 2002 Aug; 58(Pt 8):1329-31. PubMed ID: 12136145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of cytochrome bo function in Vitreoscilla using a cyo(-) knockout mutant.
    Kim KJ; Chi PY; Hwang KW; Stark BC; Webster DA
    J Biochem; 2000 Jul; 128(1):49-55. PubMed ID: 10876157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o.
    Tsai PS; Nägeli M; Bailey JE
    Biotechnol Bioeng; 2002 Sep; 79(5):558-67. PubMed ID: 12209827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substitutions of conserved aromatic amino acid residues in subunit I perturb the metal centers of the Escherichia coli bo-type ubiquinol oxidase.
    Mogi T; Minagawa J; Hirano T; Sato-Watanabe M; Tsubaki M; Uno T; Hori H; Nakamura H; Nishimura Y; Anraku Y
    Biochemistry; 1998 Feb; 37(6):1632-9. PubMed ID: 9484234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. G204D, a mutation that blocks the proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides.
    Han D; Morgan JE; Gennis RB
    Biochemistry; 2005 Sep; 44(38):12767-74. PubMed ID: 16171391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, sequencing, and characterization of the cytochrome bo operon from Vitreoscilla.
    Hwang KW; Kim SK; Kim KJ; Chung YT; Stark BC; Webster DA
    DNA Seq; 2003 Feb; 14(1):53-9. PubMed ID: 12751331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitutions for glutamate 101 in subunit II of cytochrome c oxidase from Rhodobacter sphaeroides result in blocking the proton-conducting K-channel.
    Tomson FL; Morgan JE; Gu G; Barquera B; Vygodina TV; Gennis RB
    Biochemistry; 2003 Feb; 42(6):1711-7. PubMed ID: 12578386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome c oxidase as a calcium binding protein. Studies on the role of a conserved aspartate in helices XI-XII cytoplasmic loop in cation binding.
    Kirichenko AV; Pfitzner U; Ludwig B; Soares CM; Vygodina TV; Konstantinov AA
    Biochemistry; 2005 Sep; 44(37):12391-401. PubMed ID: 16156652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional hydration and conformational gating of proton uptake in cytochrome c oxidase.
    Henry RM; Yu CH; Rodinger T; Pomès R
    J Mol Biol; 2009 Apr; 387(5):1165-85. PubMed ID: 19248790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity.
    Thomas JW; Puustinen A; Alben JO; Gennis RB; Wikström M
    Biochemistry; 1993 Oct; 32(40):10923-8. PubMed ID: 8399242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases.
    Park KW; Kim KJ; Howard AJ; Stark BC; Webster DA
    J Biol Chem; 2002 Sep; 277(36):33334-7. PubMed ID: 12080058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The proton pumping bo oxidase from Vitreoscilla.
    Graf S; Brzezinski P; von Ballmoos C
    Sci Rep; 2019 Mar; 9(1):4766. PubMed ID: 30886219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site.
    Abramson J; Riistama S; Larsson G; Jasaitis A; Svensson-Ek M; Laakkonen L; Puustinen A; Iwata S; Wikström M
    Nat Struct Biol; 2000 Oct; 7(10):910-7. PubMed ID: 11017202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli.
    Minagawa J; Mogi T; Gennis RB; Anraku Y
    J Biol Chem; 1992 Jan; 267(3):2096-104. PubMed ID: 1309808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring subunit-subunit interactions in the Escherichia coli bo-type ubiquinol oxidase by extragenic suppressor mutation analysis.
    Saiki K; Mogi T; Tsubaki M; Hori H; Anraku Y
    J Biol Chem; 1997 Jun; 272(23):14721-6. PubMed ID: 9169436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer processes in subunit I mutants of cytochrome bo quinol oxidase in Escherichia coli.
    Kobayashi K; Tagawa S; Mogi T
    Biosci Biotechnol Biochem; 2009 Jul; 73(7):1599-603. PubMed ID: 19584547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site.
    Borisov VB; Belevich I; Bloch DA; Mogi T; Verkhovsky MI
    Biochemistry; 2008 Jul; 47(30):7907-14. PubMed ID: 18597483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.