These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 15911121)

  • 1. Are paragriseal cells in the avian lumbosacral spinal cord displaced ventral spinocerebellar tract neurons?
    Necker R
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):56-60. PubMed ID: 15911121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase.
    Snyder RL; Faull RL; Mehler WR
    J Comp Neurol; 1978 Oct; 181(4):833-52. PubMed ID: 99460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase.
    Matsushita M; Hosoya Y; Ikeda M
    J Comp Neurol; 1979 Mar; 184(1):81-106. PubMed ID: 84004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laterality of the spinocerebellar axons and location of cells projecting to anterior or posterior cerebellum in the chicken spinal cord.
    Yamamoto M; Akita M; Imagawa T; Uehara M
    Brain Res Bull; 2001 Jan; 54(2):159-65. PubMed ID: 11275405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal neurons projecting to anterior or posterior cerebellum in the pigeon.
    Necker R
    Anat Embryol (Berl); 1992; 185(4):325-34. PubMed ID: 1609961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells of origin of spinothalamic, spinotectal, spinoreticular and spinocerebellar pathways in the pigeon as studied by the retrograde transport of horseradish peroxidase.
    Necker R
    J Hirnforsch; 1989; 30(1):33-43. PubMed ID: 2723410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histological and immunocytochemical characterization of neurons located in the white matter of the spinal cord of the pigeon.
    Necker R
    J Chem Neuroanat; 2004 May; 27(2):109-17. PubMed ID: 15121215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propriospinal projections to the ventral horn of the rostral and caudal hindlimb enlargement in turtles.
    Berkowitz A
    Brain Res; 2004 Jul; 1014(1-2):164-76. PubMed ID: 15213001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the anterior lobe: an experimental anatomical study in the cat with retrograde tracing techniques.
    Xu Q; Grant G
    J Comp Neurol; 1994 Jul; 345(2):288-302. PubMed ID: 7523461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat.
    Dutton RC; Carstens MI; Antognini JF; Carstens E
    Brain Res; 2006 Nov; 1119(1):76-85. PubMed ID: 16996042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinocerebellar projections in the pigeon with special reference to the neck region of the body.
    Necker R
    J Comp Neurol; 2001 Jan; 429(3):403-18. PubMed ID: 11116228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descending propriospinal axons in the hindlimb enlargement of the red-eared turtle: cells of origin and funicular courses.
    Berkowitz A; Stein PS
    J Comp Neurol; 1994 Aug; 346(3):321-36. PubMed ID: 7527804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory inputs to four types of spinocerebellar tract neurons in the cat spinal cord.
    Shakya Shrestha S; Bannatyne BA; Jankowska E; Hammar I; Nilsson E; Maxwell DJ
    Neuroscience; 2012 Dec; 226():253-69. PubMed ID: 22989920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cytoarchitectonic analysis of the spinal cord of the pigeon (Columba livia).
    Leonard RB; Cohen DH
    J Comp Neurol; 1975 Sep; 163(2):159-80. PubMed ID: 1165324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trajectories in the spinal cord and the mediolateral spread in the cerebellar cortex of spinocerebellar fibers from the unilateral lumbosacral enlargement in the chicken.
    Furue M; Uchida S; Shinozaki A; Imagawa T; Hosaka YZ; Uehara M
    Brain Behav Evol; 2011; 77(1):45-54. PubMed ID: 21325814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleus z in the rat: spinal afferents from collaterals of dorsal spinocerebellar tract neurons.
    Low JS; Mantle-St John LA; Tracey DJ
    J Comp Neurol; 1986 Jan; 243(4):510-26. PubMed ID: 3950083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin, course, and laterality of spinocerebellar axons in the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Anat Rec; 1998 Aug; 251(4):528-47. PubMed ID: 9713988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical and hodological characterization of calbindin-D28k-containing neurons in the spinal cord of the turtle, Pseudemys scripta elegans.
    Morona R; López JM; Domínguez L; González A
    Microsc Res Tech; 2007 Feb; 70(2):101-18. PubMed ID: 17203484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.