These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 15911344)

  • 1. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron.
    Goritz C; Mauch DH; Pfrieger FW
    Mol Cell Neurosci; 2005 Jun; 29(2):190-201. PubMed ID: 15911344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture.
    Ullian EM; Harris BT; Wu A; Chan JR; Barres BA
    Mol Cell Neurosci; 2004 Feb; 25(2):241-51. PubMed ID: 15019941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons.
    Hu R; Cai WQ; Wu XG; Yang Z
    Neuroscience; 2007 Feb; 144(4):1229-40. PubMed ID: 17184929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial cells promote dendrite formation and the reception of synaptic input in Purkinje cells from postnatal mice.
    Buard I; Steinmetz CC; Claudepierre T; Pfrieger FW
    Glia; 2010 Apr; 58(5):538-45. PubMed ID: 19908290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNS synaptogenesis promoted by glia-derived cholesterol.
    Mauch DH; Nägler K; Schumacher S; Göritz C; Müller EC; Otto A; Pfrieger FW
    Science; 2001 Nov; 294(5545):1354-7. PubMed ID: 11701931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic and extrasynaptic neurotransmitter receptors in glial precursors' quest for identity.
    Belachew S; Gallo V
    Glia; 2004 Nov; 48(3):185-96. PubMed ID: 15390115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretory products of central nervous system glial cells induce Schwann cell proliferation and protect from cytokine-mediated death.
    Lisak RP; Bealmear B; Nedelkoska L; Benjamins JA
    J Neurosci Res; 2006 Jun; 83(8):1425-31. PubMed ID: 16583376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ryanodine receptor-transmitter release site coupling increases quantal size in a synapse-specific manner.
    Dunn TW; Syed NI
    Eur J Neurosci; 2006 Sep; 24(6):1591-605. PubMed ID: 17004923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matching of pre- and postsynaptic specializations during synaptogenesis.
    Lardi-Studler B; Fritschy JM
    Neuroscientist; 2007 Apr; 13(2):115-26. PubMed ID: 17404372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation.
    Maximov A; Pang ZP; Tervo DG; Südhof TC
    J Neurosci Methods; 2007 Mar; 161(1):75-87. PubMed ID: 17118459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic transmission is impaired at neuronal autonomic synapses in agrin-null mice.
    Gingras J; Rassadi S; Cooper E; Ferns M
    Dev Neurobiol; 2007 Apr; 67(5):521-34. PubMed ID: 17443806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glia-induced neuronal differentiation by transcriptional regulation.
    Göritz C; Thiebaut R; Tessier LH; Nieweg K; Moehle C; Buard I; Dupont JL; Schurgers LJ; Schmitz G; Pfrieger FW
    Glia; 2007 Aug; 55(11):1108-22. PubMed ID: 17582617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptogenesis and amino acid release from long term embryonic rat spinal cord neuronal culture using tissue culture inserts.
    Marsala M; Kakinohana O; Hefferan MP; Cizkova D; Kinjoh K; Marsala S
    J Neurosci Methods; 2005 Jan; 141(1):21-7. PubMed ID: 15585285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeking long-term relationship: axon and target communicate to organize synaptic differentiation.
    Fox MA; Umemori H
    J Neurochem; 2006 Jun; 97(5):1215-31. PubMed ID: 16638017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynaptic receptor mechanisms underlying developmental speeding of synaptic transmission.
    Takahashi T
    Neurosci Res; 2005 Nov; 53(3):229-40. PubMed ID: 16219377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonin modulates transmitter release at central Lymnaea synapses through a G-protein-coupled and cAMP-mediated pathway.
    McCamphill PK; Dunn TW; Syed NI
    Eur J Neurosci; 2008 Apr; 27(8):2033-42. PubMed ID: 18412624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission.
    Martín ED; Fernández M; Perea G; Pascual O; Haydon PG; Araque A; Ceña V
    Glia; 2007 Jan; 55(1):36-45. PubMed ID: 17004232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of synapse number by glia.
    Ullian EM; Sapperstein SK; Christopherson KS; Barres BA
    Science; 2001 Jan; 291(5504):657-61. PubMed ID: 11158678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of realistic retinal networks in culture promoted by the superior colliculus.
    Colicos MA; Firth SI; Bosze J; Goldstein J; Feller MB
    Dev Neurosci; 2004; 26(5-6):406-16. PubMed ID: 15855770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.