BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15911561)

  • 1. Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells.
    Etxeberria E; González P; Tomlinson P; Pozueta-Romero J
    J Exp Bot; 2005 Jul; 56(417):1905-12. PubMed ID: 15911561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time method of imaging glucose uptake in single, living mammalian cells.
    Yamada K; Saito M; Matsuoka H; Inagaki N
    Nat Protoc; 2007; 2(3):753-62. PubMed ID: 17406637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose-inducible endocytosis as a mechanism for nutrient uptake in heterotrophic plant cells.
    Etxeberria E; Baroja-Fernandez E; Muñoz FJ; Pozueta-Romero J
    Plant Cell Physiol; 2005 Mar; 46(3):474-81. PubMed ID: 15695454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement.
    Zou C; Wang Y; Shen Z
    J Biochem Biophys Methods; 2005 Sep; 64(3):207-15. PubMed ID: 16182371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syntheses of 2-NBDG analogues for monitoring stereoselective uptake of D-glucose.
    Yamamoto T; Tanaka S; Suga S; Watanabe S; Nagatomo K; Sasaki A; Nishiuchi Y; Teshima T; Yamada K
    Bioorg Med Chem Lett; 2011 Jul; 21(13):4088-96. PubMed ID: 21636274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone.
    Román Y; Alfonso A; Louzao MC; Vieytes MR; Botana LM
    Pflugers Arch; 2001 Nov; 443(2):234-9. PubMed ID: 11713649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines.
    Millon SR; Ostrander JH; Brown JQ; Raheja A; Seewaldt VL; Ramanujam N
    Breast Cancer Res Treat; 2011 Feb; 126(1):55-62. PubMed ID: 20390344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometric analysis of glucose transport by rat brain cells.
    Aller CB; Ehmann S; Gilman-Sachs A; Snyder AK
    Cytometry; 1997 Mar; 27(3):262-8. PubMed ID: 9041115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects.
    Jung DW; Ha HH; Zheng X; Chang YT; Williams DR
    Mol Biosyst; 2011 Feb; 7(2):346-58. PubMed ID: 20927436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of drug-induced cytotoxicity on glucose uptake in Hodgkin's lymphoma cells.
    Banning U; Barthel H; Mauz-Körholz C; Kluge R; Körholz D; Sabri O
    Eur J Haematol; 2006 Aug; 77(2):102-8. PubMed ID: 16800842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog.
    Lloyd PG; Hardin CD; Sturek M
    Physiol Res; 1999; 48(6):401-10. PubMed ID: 10783904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes.
    Barros LF; Bittner CX; Loaiza A; Ruminot I; Larenas V; Moldenhauer H; Oyarzún C; Alvarez M
    J Neurochem; 2009 May; 109 Suppl 1():94-100. PubMed ID: 19393014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans.
    Yoshioka K; Oh KB; Saito M; Nemoto Y; Matsuoka H
    Appl Microbiol Biotechnol; 1996 Nov; 46(4):400-4. PubMed ID: 8987729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells.
    O'Neil RG; Wu L; Mullani N
    Mol Imaging Biol; 2005; 7(6):388-92. PubMed ID: 16284704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.
    Jakoby P; Schmidt E; Ruminot I; Gutiérrez R; Barros LF; Deitmer JW
    Cereb Cortex; 2014 Jan; 24(1):222-31. PubMed ID: 23042735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascorbic acid-dependent GLUT3 inhibition is a critical step for switching neuronal metabolism.
    Beltrán FA; Acuña AI; Miró MP; Angulo C; Concha II; Castro MA
    J Cell Physiol; 2011 Dec; 226(12):3286-94. PubMed ID: 21321936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescence method for measurement of glucose transport in kidney cells.
    Blodgett AB; Kothinti RK; Kamyshko I; Petering DH; Kumar S; Tabatabai NM
    Diabetes Technol Ther; 2011 Jul; 13(7):743-51. PubMed ID: 21510766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells.
    Yoshioka K; Saito M; Oh KB; Nemoto Y; Matsuoka H; Natsume M; Abe H
    Biosci Biotechnol Biochem; 1996 Nov; 60(11):1899-901. PubMed ID: 8987871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts.
    Bandmann V; Homann U
    Plant J; 2012 May; 70(4):578-84. PubMed ID: 22211449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli.
    Yoshioka K; Takahashi H; Homma T; Saito M; Oh KB; Nemoto Y; Matsuoka H
    Biochim Biophys Acta; 1996 Feb; 1289(1):5-9. PubMed ID: 8605231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.