BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15911614)

  • 21. ¹³C, ¹⁵N and ¹H backbone and side chain chemical shift assignment of acid-stress bacterial chaperone HdeA at pH 6.
    Crowhurst KA
    Biomol NMR Assign; 2014 Oct; 8(2):319-23. PubMed ID: 23835624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding and folding of the small bacterial chaperone HdeA.
    Ahlstrom LS; Dickson A; Brooks CL
    J Phys Chem B; 2013 Oct; 117(42):13219-25. PubMed ID: 23738772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function.
    Wang W; Rasmussen T; Harding AJ; Booth NA; Booth IR; Naismith JH
    J Mol Biol; 2012 Jan; 415(3):538-46. PubMed ID: 22138344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the Structure of the Escherichia coli Periplasmic Proteins HdeA and YmgD by Molecular Dynamics Simulations.
    Socher E; Sticht H
    J Phys Chem B; 2016 Nov; 120(46):11845-11855. PubMed ID: 27787971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chaperone-dependent mechanisms for acid resistance in enteric bacteria.
    Hong W; Wu YE; Fu X; Chang Z
    Trends Microbiol; 2012 Jul; 20(7):328-35. PubMed ID: 22459131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative proteomics reveal distinct chaperone-client interactions in supporting bacterial acid resistance.
    Zhang S; He D; Yang Y; Lin S; Zhang M; Dai S; Chen PR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10872-7. PubMed ID: 27621474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein refolding by pH-triggered chaperone binding and release.
    Tapley TL; Franzmann TM; Chakraborty S; Jakob U; Bardwell JC
    Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1071-6. PubMed ID: 20080625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of Fibrils by the Periplasmic Molecular Chaperone HdeB from
    Nakata Y; Kitazaki Y; Kanaoka H; Shingen E; Uehara R; Hongo K; Kawata Y; Mizobata T
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36362039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing pH-dependent dissociation of HdeA dimers.
    Zhang BW; Brunetti L; Brooks CL
    J Am Chem Soc; 2011 Dec; 133(48):19393-8. PubMed ID: 22026371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of disulfide from acid stress chaperone HdeA does not wholly eliminate structure or function at low pH.
    Aguirre-Cardenas MI; Geddes-Buehre DH; Crowhurst KA
    Biochem Biophys Rep; 2021 Sep; 27():101064. PubMed ID: 34307907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DegP functions as a critical protease for bacterial acid resistance.
    Fu X; Wang Y; Shao H; Ma J; Song X; Zhang M; Chang Z
    FEBS J; 2018 Sep; 285(18):3525-3538. PubMed ID: 30085413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chaperone properties of the bacterial periplasmic substrate-binding proteins.
    Richarme G; Caldas TD
    J Biol Chem; 1997 Jun; 272(25):15607-12. PubMed ID: 9188448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic interactions are important for chaperone-client interaction in vivo.
    Lee C; Kim H; Bardwell JCA
    Microbiology (Reading); 2018 Jul; 164(7):992-997. PubMed ID: 29870331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Folding mechanisms of periplasmic proteins.
    Goemans C; Denoncin K; Collet JF
    Biochim Biophys Acta; 2014 Aug; 1843(8):1517-28. PubMed ID: 24239929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roles of structural plasticity in chaperone HdeA activity are revealed by
    Zhai Z; Wu Q; Zheng W; Liu M; Pielak GJ; Li C
    Chem Sci; 2016 Mar; 7(3):2222-2228. PubMed ID: 29910910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The periplasmic E. coli chaperone Skp is a trimer in solution: biophysical and preliminary crystallographic characterization.
    Schlapschy M; Dommel MK; Hadian K; Fogarasi M; Korndörfer IP; Skerra A
    Biol Chem; 2004 Feb; 385(2):137-43. PubMed ID: 15101556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The F4 fimbrial chaperone FaeE is stable as a monomer that does not require self-capping of its pilin-interactive surfaces.
    Van Molle I; Moonens K; Buts L; Garcia-Pino A; Panjikar S; Wyns L; De Greve H; Bouckaert J
    Acta Crystallogr D Biol Crystallogr; 2009 May; 65(Pt 5):411-20. PubMed ID: 19390146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of the pH-dependent Activity of Escherichia coli Chaperone HdeB In Vitro and In Vivo.
    Dahl JU; Koldewey P; Bardwell JC; Jakob U
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system.
    Petit-Härtlein I; Rome K; de Rosny E; Molton F; Duboc C; Gueguen E; Rodrigue A; Covès J
    Biochem J; 2015 Dec; 472(2):205-16. PubMed ID: 26438879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.