These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15911619)

  • 1. The identification of a minimal dimerization motif QXXS that enables homo- and hetero-association of transmembrane helices in vivo.
    Sal-Man N; Gerber D; Shai Y
    J Biol Chem; 2005 Jul; 280(29):27449-57. PubMed ID: 15911619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo.
    Sal-Man N; Gerber D; Shai Y
    Biochemistry; 2004 Mar; 43(8):2309-13. PubMed ID: 14979727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine mutations within a transmembrane domain of Tar, an Escherichia coli aspartate receptor, can drive homodimer dissociation and heterodimer association in vivo.
    Sal-Man N; Shai Y
    Biochem J; 2005 Jan; 385(Pt 1):29-36. PubMed ID: 15330757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline localized to the interaction interface can mediate self-association of transmembrane domains.
    Sal-Man N; Gerber D; Shai Y
    Biochim Biophys Acta; 2014 Sep; 1838(9):2313-8. PubMed ID: 24841754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity in transmembrane helix-helix interactions mediated by aromatic residues.
    Sal-Man N; Gerber D; Bloch I; Shai Y
    J Biol Chem; 2007 Jul; 282(27):19753-61. PubMed ID: 17488729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization.
    Gerber D; Sal-Man N; Shai Y
    J Biol Chem; 2004 May; 279(20):21177-82. PubMed ID: 14985340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-specific dimerization of the transmembrane domain of the "BH3-only" protein BNIP3 in membranes and detergent.
    Sulistijo ES; Jaszewski TM; MacKenzie KR
    J Biol Chem; 2003 Dec; 278(51):51950-6. PubMed ID: 14532263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
    Psachoulia E; Marshall DP; Sansom MS
    Acc Chem Res; 2010 Mar; 43(3):388-96. PubMed ID: 20017540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hetero-assembly between all-L- and all-D-amino acid transmembrane domains: forces involved and implication for inactivation of membrane proteins.
    Sal-Man N; Gerber D; Shai Y
    J Mol Biol; 2004 Nov; 344(3):855-64. PubMed ID: 15533450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of GxxxG Motifs in Transmembrane Domain Interactions.
    Teese MG; Langosch D
    Biochemistry; 2015 Aug; 54(33):5125-35. PubMed ID: 26244771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention of native-like oligomerization states in transmembrane segment peptides: application to the Escherichia coli aspartate receptor.
    Melnyk RA; Partridge AW; Deber CM
    Biochemistry; 2001 Sep; 40(37):11106-13. PubMed ID: 11551208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes.
    Li R; Gorelik R; Nanda V; Law PB; Lear JD; DeGrado WF; Bennett JS
    J Biol Chem; 2004 Jun; 279(25):26666-73. PubMed ID: 15067009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The GxxxG motif: a framework for transmembrane helix-helix association.
    Russ WP; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):911-9. PubMed ID: 10677291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide mimics of the M13 coat protein transmembrane segment. Retention of helix-helix interaction motifs.
    Wang C; Deber CM
    J Biol Chem; 2000 May; 275(21):16155-9. PubMed ID: 10747951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The single transmembrane domains of ErbB receptors self-associate in cell membranes.
    Mendrola JM; Berger MB; King MC; Lemmon MA
    J Biol Chem; 2002 Feb; 277(7):4704-12. PubMed ID: 11741943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of individual amino acids in the dimerization of CR4 and ACR4 transmembrane domains.
    Stokes KD; Rao AG
    Arch Biochem Biophys; 2010 Oct; 502(2):104-11. PubMed ID: 20655866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dimerization interface of the glycoprotein IbĪ² transmembrane domain corresponds to polar residues within a leucine zipper motif.
    Wei P; Liu X; Hu MH; Zuo LM; Kai M; Wang R; Luo SZ
    Protein Sci; 2011 Nov; 20(11):1814-23. PubMed ID: 21830242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and initial characterization of FGFR3 transmembrane domain: consequences of sequence modifications.
    Iwamoto T; You M; Li E; Spangler J; Tomich JM; Hristova K
    Biochim Biophys Acta; 2005 Mar; 1668(2):240-7. PubMed ID: 15737335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.