These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 15911633)
1. Four base recognition by triplex-forming oligonucleotides at physiological pH. Rusling DA; Powers VE; Ranasinghe RT; Wang Y; Osborne SD; Brown T; Fox KR Nucleic Acids Res; 2005; 33(9):3025-32. PubMed ID: 15911633 [TBL] [Abstract][Full Text] [Related]
2. Selectivity and affinity of triplex-forming oligonucleotides containing 2'-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine for recognizing AT base pairs in duplex DNA. Osborne SD; Powers VE; Rusling DA; Lack O; Fox KR; Brown T Nucleic Acids Res; 2004; 32(15):4439-47. PubMed ID: 15317869 [TBL] [Abstract][Full Text] [Related]
3. Combining nucleoside analogues to achieve recognition of oligopurine tracts by triplex-forming oligonucleotides at physiological pH. Rusling DA; Le Strat L; Powers VE; Broughton-Head VJ; Booth J; Lack O; Brown T; Fox KR FEBS Lett; 2005 Dec; 579(29):6616-20. PubMed ID: 16293248 [TBL] [Abstract][Full Text] [Related]
4. Stable recognition of TA interruptions by triplex forming oligonucleotides containing a novel nucleoside. Wang Y; Rusling DA; Powers VE; Lack O; Osborne SD; Fox KR; Brown T Biochemistry; 2005 Apr; 44(15):5884-92. PubMed ID: 15823047 [TBL] [Abstract][Full Text] [Related]
5. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Gowers DM; Bijapur J; Brown T; Fox KR Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282 [TBL] [Abstract][Full Text] [Related]
6. CG base pair recognition within DNA triple helices by modified N-methylpyrrolo-dC nucleosides. Gerrard SR; Edrees MM; Bouamaied I; Fox KR; Brown T Org Biomol Chem; 2010 Nov; 8(22):5087-96. PubMed ID: 20835452 [TBL] [Abstract][Full Text] [Related]
7. DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines. Gowers DM; Fox KR Nucleic Acids Res; 1997 Oct; 25(19):3787-94. PubMed ID: 9380499 [TBL] [Abstract][Full Text] [Related]
8. Strong, specific, monodentate G-C base pair recognition by N7-inosine derivatives in the pyrimidine.purine-pyrimidine triple-helical binding motif. Marfurt J; Parel SP; Leumann CJ Nucleic Acids Res; 1997 May; 25(10):1875-82. PubMed ID: 9115352 [TBL] [Abstract][Full Text] [Related]
9. Recognition of CG inversions in DNA triple helices by methylated 3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues. Ranasinghe RT; Rusling DA; Powers VE; Fox KR; Brown T Chem Commun (Camb); 2005 May; (20):2555-7. PubMed ID: 15900324 [TBL] [Abstract][Full Text] [Related]
10. An isocytidine derivative with a 2-amino-6-methylpyridine unit for selective recognition of the CG interrupting site in an antiparallel triplex DNA. Okamura H; Taniguchi Y; Sasaki S Chembiochem; 2014 Nov; 15(16):2374-8. PubMed ID: 25186222 [TBL] [Abstract][Full Text] [Related]
11. Secondary binding sites for triplex-forming oligonucleotides containing bulges, loops, and mismatches in the third strand. Fox KR; Flashman E; Gowers D Biochemistry; 2000 Jun; 39(22):6714-25. PubMed ID: 10828990 [TBL] [Abstract][Full Text] [Related]
12. Triple helix formation at (AT)n adjacent to an oligopurine tract. Gowers DM; Fox KR Nucleic Acids Res; 1998 Aug; 26(16):3626-33. PubMed ID: 9685475 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and properties of triplex-forming oligonucleotides containing 2'-O-(2-methoxyethyl)-5-(3-aminoprop-1-ynyl)-uridine. Lou C; Xiao Q; Brennan L; Light ME; Vergara-Irigaray N; Atkinson EM; Holden-Dye LM; Fox KR; Brown T Bioorg Med Chem; 2010 Sep; 18(17):6389-97. PubMed ID: 20674370 [TBL] [Abstract][Full Text] [Related]
14. Recognition of 5-methyl-CG and CG base pairs in duplex DNA with high stability using antiparallel-type triplex-forming oligonucleotides with 2-guanidinoethyl-2'-deoxynebularine. Notomi R; Sasaki S; Taniguchi Y Nucleic Acids Res; 2022 Nov; 50(21):12071-12081. PubMed ID: 36454012 [TBL] [Abstract][Full Text] [Related]
15. Aminopyridinyl-Pseudodeoxycytidine Derivatives Selectively Stabilize Antiparallel Triplex DNA with Multiple CG Inversion Sites. Okamura H; Taniguchi Y; Sasaki S Angew Chem Int Ed Engl; 2016 Sep; 55(40):12445-9. PubMed ID: 27576703 [TBL] [Abstract][Full Text] [Related]
16. Stable DNA triple helix formation using oligonucleotides containing 2'-aminoethoxy,5-propargylamino-U. Sollogoub M; Darby RA; Cuenoud B; Brown T; Fox KR Biochemistry; 2002 Jun; 41(23):7224-31. PubMed ID: 12044153 [TBL] [Abstract][Full Text] [Related]
17. CG base pair recognition within DNA triple helices using N-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one nucleoside analogues. Gerrard SR; Srinivasan N; Fox KR; Brown T Nucleosides Nucleotides Nucleic Acids; 2007; 26(10-12):1363-7. PubMed ID: 18066784 [TBL] [Abstract][Full Text] [Related]
18. 2',4'-BNA bearing a 2-pyridine nucleobase for CG base pair recognition in the parallel motif triplex DNA. Hari Y; Matsugu S; Inohara H; Hatanaka Y; Akabane M; Imanishi T; Obika S Org Biomol Chem; 2010 Sep; 8(18):4176-80. PubMed ID: 20648389 [TBL] [Abstract][Full Text] [Related]
19. DNase I footprinting of triple helix formation at polypurine tracts by acridine-linked oligopyrimidines: stringency, structural changes and interaction with minor groove binding ligands. Stonehouse TJ; Fox KR Biochim Biophys Acta; 1994 Aug; 1218(3):322-30. PubMed ID: 8049258 [TBL] [Abstract][Full Text] [Related]
20. Coralyne has a preference for intercalation between TA.T triples in intramolecular DNA triple helices. Moraru-Allen AA; Cassidy S; Asensio Alvarez JL; Fox KR; Brown T; Lane AN Nucleic Acids Res; 1997 May; 25(10):1890-6. PubMed ID: 9115354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]