These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15911769)

  • 1. Source pool geometry and the assembly of continental avifaunas.
    Graves GR; Rahbek C
    Proc Natl Acad Sci U S A; 2005 May; 102(22):7871-6. PubMed ID: 15911769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion fields reveal the compositional structure of South American vertebrate assemblages.
    Borregaard MK; Graves GR; Rahbek C
    Nat Commun; 2020 Jan; 11(1):491. PubMed ID: 31980659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly patterns of mixed-species avian flocks in the Andes.
    Colorado GJ; Rodewald AD
    J Anim Ecol; 2015 Mar; 84(2):386-95. PubMed ID: 25283441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process-Based Species Pools Reveal the Hidden Signature of Biotic Interactions Amid the Influence of Temperature Filtering.
    Lessard JP; Weinstein BG; Borregaard MK; Marske KA; Martin DR; McGuire JA; Parra JL; Rahbek C; Graham CH
    Am Nat; 2016 Jan; 187(1):75-88. PubMed ID: 27277404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting continental-scale patterns of bird species richness with spatially explicit models.
    Rahbek C; Gotelli NJ; Colwell RK; Entsminger GL; Rangel TF; Graves GR
    Proc Biol Sci; 2007 Jan; 274(1607):165-74. PubMed ID: 17148246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale assessment of patterns of avian species richness.
    Rahbek C; Graves GR
    Proc Natl Acad Sci U S A; 2001 Apr; 98(8):4534-9. PubMed ID: 11296292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diet niche relationships among North American grassland and shrubsteppe birds.
    Wiens JA; Rotenberry JT
    Oecologia; 1979 Oct; 42(3):253-292. PubMed ID: 28309503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogeographical basis of recent phenotypic divergence among birds: a global study of subspecies richness.
    Phillimore AB; Orme CD; Davies RG; Hadfield JD; Reed WJ; Gaston KJ; Freckleton RP; Owens IP
    Evolution; 2007 Apr; 61(4):942-57. PubMed ID: 17439623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment.
    Rangel TF; Diniz-Filho JA; Colwell RK
    Am Nat; 2007 Oct; 170(4):602-16. PubMed ID: 17891738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of metrics of phylogenetic structure to scale, source of data and species pool of hummingbird assemblages along elevational gradients.
    González-Caro S; Parra JL; Graham CH; McGuire JA; Cadena CD
    PLoS One; 2012; 7(4):e35472. PubMed ID: 22558157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial scale, abundance and the species-energy relationship in British birds.
    Evans KL; Newson SE; Storch D; Greenwood JJ; Gaston KJ
    J Anim Ecol; 2008 Mar; 77(2):395-405. PubMed ID: 18005031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The shapes of phylogenetic trees of clades, faunas, and local assemblages: exploring spatial pattern in differential diversification.
    Heard SB; Cox GH
    Am Nat; 2007 May; 169(5):E107-18. PubMed ID: 17427125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latitudinal variation in the shape of the species body size distribution: an analysis using freshwater fishes.
    Knouft JH
    Oecologia; 2004 May; 139(3):408-17. PubMed ID: 15069632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial scaling of functional structure in bird and mammal assemblages.
    Belmaker J; Jetz W
    Am Nat; 2013 Apr; 181(4):464-78. PubMed ID: 23535612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. To what extent does Tobler's 1st law of geography apply to macroecology? A case study using American palms (Arecaceae).
    Bjorholm S; Svenning JC; Skov F; Balslev H
    BMC Ecol; 2008 May; 8():11. PubMed ID: 18498661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Niche dissociated assembly drives insular lizard community organization.
    Harikrishnan S; Vasudevan K
    Sci Rep; 2018 Aug; 8(1):11978. PubMed ID: 30097637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds.
    Gómez JP; Bravo GA; Brumfield RT; Tello JG; Cadena CD
    J Anim Ecol; 2010 Nov; 79(6):1181-92. PubMed ID: 20642767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly.
    Tilman D
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10854-61. PubMed ID: 15243158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial turnover in the global avifauna.
    Gaston KJ; Davies RG; Orme CD; Olson VA; Thomas GH; Ding TS; Rasmussen PC; Lennon JJ; Bennett PM; Owens IP; Blackburn TM
    Proc Biol Sci; 2007 Jul; 274(1618):1567-74. PubMed ID: 17472910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios.
    Barbet-Massin M; Jetz W
    Glob Chang Biol; 2015 Aug; 21(8):2917-28. PubMed ID: 25931153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.